summaryrefslogtreecommitdiff
path: root/src/gpu/effects/theme_modulation_effect.h
diff options
context:
space:
mode:
authorskal <pascal.massimino@gmail.com>2026-02-13 22:42:45 +0100
committerskal <pascal.massimino@gmail.com>2026-02-13 22:42:45 +0100
commitf81a30d15e1e7db0492f45a0b9bec6aaa20ae5c2 (patch)
treedeb202a7d995895ec90e8ddc8c3fbf92082ea434 /src/gpu/effects/theme_modulation_effect.h
parent7c1f937222d0e36294ebd25db949c6227aed6985 (diff)
CNN v2: Use alpha channel for p3 depth feature + layer visualization
Training changes (train_cnn_v2.py): - p3 now uses target image alpha channel (depth proxy for 2D images) - Default changed from 0.0 → 1.0 (far plane semantics) - Both PatchDataset and ImagePairDataset updated Test tools (cnn_test.cc): - New load_depth_from_alpha() extracts PNG alpha → p3 texture - Fixed bind group layout: use UnfilterableFloat for R32Float depth - Added --save-intermediates support for CNN v2: * Each layer_N.png shows 4 channels horizontally (1812×345 grayscale) * layers_composite.png stacks all layers vertically (1812×1380) * static_features.png shows 4 feature channels horizontally - Per-channel visualization enables debugging layer-by-layer differences HTML tool (index.html): - Extract alpha channel from input image → depth texture - Matches training data distribution for validation Note: Current weights trained with p3=0 are now mismatched. Both tools use p3=alpha consistently, so outputs remain comparable for debugging. Retrain required for optimal quality. Co-Authored-By: Claude Sonnet 4.5 <noreply@anthropic.com>
Diffstat (limited to 'src/gpu/effects/theme_modulation_effect.h')
0 files changed, 0 insertions, 0 deletions