diff options
| author | skal <pascal.massimino@gmail.com> | 2026-02-05 20:18:28 +0100 |
|---|---|---|
| committer | skal <pascal.massimino@gmail.com> | 2026-02-05 20:18:28 +0100 |
| commit | 12816810855883472ecab454f9c0d08d66f0ae52 (patch) | |
| tree | 37e294d82cfe7c6cb887ed774268e6243fae0c77 /src/audio/miniaudio_backend.cc | |
| parent | 3ba0d20354a67b9fc62d29d13bc283c18130bbb9 (diff) | |
feat(audio): Complete Task #56 - Audio Lifecycle Refactor (All Phases)
SUMMARY
=======
Successfully completed comprehensive 4-phase refactor of audio subsystem to
eliminate fragile initialization order dependency between synth and tracker.
This addresses long-standing architectural fragility where tracker required
synth to be initialized first or spectrograms would be cleared.
IMPLEMENTATION
==============
Phase 1: Design & Prototype
- Created AudioEngine class as unified audio subsystem manager
- Created SpectrogramResourceManager for lazy resource loading
- Manages synth, tracker, and resource lifecycle
- Comprehensive test suite (test_audio_engine.cc)
Phase 2: Test Migration
- Migrated all tracker tests to use AudioEngine
- Updated: test_tracker.cc, test_tracker_timing.cc,
test_variable_tempo.cc, test_wav_dump.cc
- Pattern: Replace synth_init() + tracker_init() with engine.init()
- All 20 tests pass (100% pass rate)
Phase 3: Production Integration
- Fixed pre-existing demo crash (procedural texture loading)
- Updated flash_cube_effect.cc and hybrid_3d_effect.cc
- Migrated main.cc to use AudioEngine
- Replaced tracker_update() calls with engine.update()
Phase 4: Cleanup & Documentation
- Removed synth_init() call from audio_init() (backwards compatibility)
- Added AudioEngine usage guide to HOWTO.md
- Added audio initialization protocols to CONTRIBUTING.md
- Binary size verification: <500 bytes overhead (acceptable)
RESULTS
=======
✅ All 20 tests pass (100% pass rate)
✅ Demo runs successfully with audio and visuals
✅ Initialization order fragility eliminated
✅ Binary size impact minimal (<500 bytes)
✅ Clear documentation for future development
✅ No backwards compatibility issues
DOCUMENTATION UPDATES
=====================
- Updated TODO.md: Moved Task #56 to "Recently Completed"
- Updated PROJECT_CONTEXT.md: Added AudioEngine milestone
- Updated HOWTO.md: Added "Audio System" section with usage examples
- Updated CONTRIBUTING.md: Added audio initialization protocols
CODE FORMATTING
===============
Applied clang-format to all source files per project standards.
FILES CREATED
=============
- src/audio/audio_engine.h (new)
- src/audio/audio_engine.cc (new)
- src/audio/spectrogram_resource_manager.h (new)
- src/audio/spectrogram_resource_manager.cc (new)
- src/tests/test_audio_engine.cc (new)
KEY FILES MODIFIED
==================
- src/main.cc (migrated to AudioEngine)
- src/audio/audio.cc (removed backwards compatibility)
- All tracker test files (migrated to AudioEngine)
- doc/HOWTO.md (added usage guide)
- doc/CONTRIBUTING.md (added protocols)
- TODO.md (marked complete)
- PROJECT_CONTEXT.md (added milestone)
TECHNICAL DETAILS
=================
AudioEngine Design Philosophy:
- Manages initialization order (synth before tracker)
- Owns SpectrogramResourceManager for lazy loading
- Does NOT wrap every synth API - direct calls remain valid
- Provides lifecycle management, not a complete facade
What to Use AudioEngine For:
- Initialization: engine.init() instead of separate init calls
- Updates: engine.update(music_time) instead of tracker_update()
- Cleanup: engine.shutdown() for proper teardown
- Seeking: engine.seek(time) for timeline navigation (debug only)
Direct Synth API Usage (Still Valid):
- synth_register_spectrogram() - Register samples
- synth_trigger_voice() - Trigger playback
- synth_get_output_peak() - Get audio levels
- synth_render() - Low-level rendering
SIZE IMPACT ANALYSIS
====================
Debug build: 6.2MB
Size-optimized build: 5.0MB
Stripped build: 5.0MB
AudioEngine overhead: <500 bytes (0.01% of total)
BACKWARD COMPATIBILITY
======================
No breaking changes. Tests that need low-level control can still call
synth_init() directly. AudioEngine is the recommended pattern for
production code and tests requiring both synth and tracker.
handoff(Claude): Task #56 COMPLETE - All 4 phases finished. Audio
initialization is now robust, well-documented, and properly tested.
The fragile initialization order dependency has been eliminated.
Co-Authored-By: Claude Sonnet 4.5 <noreply@anthropic.com>
Diffstat (limited to 'src/audio/miniaudio_backend.cc')
| -rw-r--r-- | src/audio/miniaudio_backend.cc | 100 |
1 files changed, 63 insertions, 37 deletions
diff --git a/src/audio/miniaudio_backend.cc b/src/audio/miniaudio_backend.cc index c2db268..baaf9bb 100644 --- a/src/audio/miniaudio_backend.cc +++ b/src/audio/miniaudio_backend.cc @@ -7,12 +7,12 @@ #include "ring_buffer.h" #include "util/debug.h" #include <stdio.h> -#include <stdlib.h> // for abort() +#include <stdlib.h> // for abort() // Static callback for miniaudio (C API requirement) void MiniaudioBackend::audio_callback(ma_device* pDevice, void* pOutput, - const void* pInput, - ma_uint32 frameCount) { + const void* pInput, + ma_uint32 frameCount) { (void)pInput; #if defined(DEBUG_LOG_AUDIO) @@ -33,25 +33,30 @@ void MiniaudioBackend::audio_callback(ma_device* pDevice, void* pOutput, double now = ts.tv_sec + ts.tv_nsec / 1000000000.0; if (timing_initialized) { - double delta = (now - last_time) * 1000.0; // ms + double delta = (now - last_time) * 1000.0; // ms double expected = ((double)frameCount / pDevice->sampleRate) * 1000.0; double jitter = delta - expected; // Enhanced logging: Log first 20 callbacks in detail, then periodic summary if (callback_number <= 20 || callback_number % 50 == 0) { - const double elapsed_by_frames = (double)total_frames_requested / pDevice->sampleRate * 1000.0; - const double elapsed_by_time = now * 1000.0; // Convert to ms - DEBUG_AUDIO("[CB#%llu] frameCount=%u, Delta=%.2fms, Expected=%.2fms, Jitter=%.2fms, " - "TotalFrames=%llu (%.1fms), TotalTime=%.1fms, Drift=%.2fms\n", - callback_number, frameCount, delta, expected, jitter, - total_frames_requested, elapsed_by_frames, elapsed_by_time, - elapsed_by_time - elapsed_by_frames); + const double elapsed_by_frames = + (double)total_frames_requested / pDevice->sampleRate * 1000.0; + const double elapsed_by_time = now * 1000.0; // Convert to ms + DEBUG_AUDIO( + "[CB#%llu] frameCount=%u, Delta=%.2fms, Expected=%.2fms, " + "Jitter=%.2fms, " + "TotalFrames=%llu (%.1fms), TotalTime=%.1fms, Drift=%.2fms\n", + callback_number, frameCount, delta, expected, jitter, + total_frames_requested, elapsed_by_frames, elapsed_by_time, + elapsed_by_time - elapsed_by_frames); } // Detect large timing anomalies (>5ms off from expected) if (fabs(jitter) > 5.0) { - DEBUG_AUDIO("[TIMING ANOMALY] CB#%llu Delta=%.2fms, Expected=%.2fms, Jitter=%.2fms\n", - callback_number, delta, expected, jitter); + DEBUG_AUDIO( + "[TIMING ANOMALY] CB#%llu Delta=%.2fms, Expected=%.2fms, " + "Jitter=%.2fms\n", + callback_number, delta, expected, jitter); } } last_time = now; @@ -81,8 +86,10 @@ void MiniaudioBackend::audio_callback(ma_device* pDevice, void* pOutput, if (pDevice->sampleRate != 32000) { static int rate_warning = 0; if (rate_warning++ == 0) { - DEBUG_AUDIO("WARNING: Device sample rate is %u, not 32000! Resampling may occur.\n", - pDevice->sampleRate); + DEBUG_AUDIO( + "WARNING: Device sample rate is %u, not 32000! Resampling may " + "occur.\n", + pDevice->sampleRate); } } #endif /* defined(DEBUG_LOG_AUDIO) */ @@ -91,14 +98,15 @@ void MiniaudioBackend::audio_callback(ma_device* pDevice, void* pOutput, // BOUNDS CHECK: Sanity check on frameCount if (frameCount > 8192 || frameCount == 0) { - fprintf(stderr, "AUDIO CALLBACK ERROR: frameCount=%u (unreasonable!)\n", frameCount); + fprintf(stderr, "AUDIO CALLBACK ERROR: frameCount=%u (unreasonable!)\n", + frameCount); abort(); } // Read from ring buffer instead of calling synth directly AudioRingBuffer* ring_buffer = audio_get_ring_buffer(); if (ring_buffer != nullptr) { - const int samples_to_read = (int)frameCount * 2; // Stereo + const int samples_to_read = (int)frameCount * 2; // Stereo #if defined(DEBUG_LOG_RING_BUFFER) // Track buffer level and detect drops @@ -108,20 +116,24 @@ void MiniaudioBackend::audio_callback(ma_device* pDevice, void* pOutput, if (available < min_available) { min_available = available; DEBUG_RING_BUFFER("[BUFFER] CB#%llu NEW MIN: available=%d (%.1fms)\n", - callback_number, available, (float)available / (32000.0f * 2.0f) * 1000.0f); + callback_number, available, + (float)available / (32000.0f * 2.0f) * 1000.0f); } // Log buffer state for first 20 callbacks and periodically if (callback_number <= 20 || callback_number % 50 == 0) { - DEBUG_RING_BUFFER("[BUFFER] CB#%llu requested=%d, available=%d (%.1fms), min=%d\n", - callback_number, samples_to_read, available, - (float)available / (32000.0f * 2.0f) * 1000.0f, min_available); + DEBUG_RING_BUFFER( + "[BUFFER] CB#%llu requested=%d, available=%d (%.1fms), min=%d\n", + callback_number, samples_to_read, available, + (float)available / (32000.0f * 2.0f) * 1000.0f, min_available); } // CRITICAL: Verify we have enough samples if (available < samples_to_read) { - DEBUG_RING_BUFFER("[BUFFER UNDERRUN] CB#%llu requested=%d, available=%d, SHORT=%d\n", - callback_number, samples_to_read, available, samples_to_read - available); + DEBUG_RING_BUFFER( + "[BUFFER UNDERRUN] CB#%llu requested=%d, available=%d, SHORT=%d\n", + callback_number, samples_to_read, available, + samples_to_read - available); } #endif /* defined(DEBUG_LOG_RING_BUFFER) */ @@ -129,8 +141,11 @@ void MiniaudioBackend::audio_callback(ma_device* pDevice, void* pOutput, #if defined(DEBUG_LOG_RING_BUFFER) if (actually_read < samples_to_read) { - DEBUG_RING_BUFFER("[PARTIAL READ] CB#%llu requested=%d, got=%d, padded=%d with silence\n", - callback_number, samples_to_read, actually_read, samples_to_read - actually_read); + DEBUG_RING_BUFFER( + "[PARTIAL READ] CB#%llu requested=%d, got=%d, padded=%d with " + "silence\n", + callback_number, samples_to_read, actually_read, + samples_to_read - actually_read); } #endif /* defined(DEBUG_LOG_RING_BUFFER) */ } @@ -171,8 +186,8 @@ void MiniaudioBackend::init() { config.performanceProfile = ma_performance_profile_conservative; // Let Core Audio choose the period size based on conservative profile - config.periodSizeInFrames = 0; // 0 = let backend decide - config.periods = 0; // 0 = let backend decide based on performance profile + config.periodSizeInFrames = 0; // 0 = let backend decide + config.periods = 0; // 0 = let backend decide based on performance profile config.dataCallback = MiniaudioBackend::audio_callback; config.pUserData = this; @@ -187,23 +202,34 @@ void MiniaudioBackend::init() { DEBUG_AUDIO("\n=== MINIAUDIO DEVICE CONFIGURATION ===\n"); DEBUG_AUDIO(" Sample rate: %u (requested: 32000)\n", device_.sampleRate); DEBUG_AUDIO(" Channels: %u (requested: 2)\n", device_.playback.channels); - DEBUG_AUDIO(" Format: %d (requested: %d, f32=%d)\n", - device_.playback.format, config.playback.format, ma_format_f32); + DEBUG_AUDIO(" Format: %d (requested: %d, f32=%d)\n", device_.playback.format, + config.playback.format, ma_format_f32); DEBUG_AUDIO(" Period size: %u frames (%.1fms at %uHz)\n", device_.playback.internalPeriodSizeInFrames, - (float)device_.playback.internalPeriodSizeInFrames / device_.sampleRate * 1000.0f, + (float)device_.playback.internalPeriodSizeInFrames / + device_.sampleRate * 1000.0f, device_.sampleRate); - DEBUG_AUDIO(" Periods: %u (buffer multiplier)\n", device_.playback.internalPeriods); - DEBUG_AUDIO(" Backend: %s\n", ma_get_backend_name(device_.pContext->backend)); + DEBUG_AUDIO(" Periods: %u (buffer multiplier)\n", + device_.playback.internalPeriods); + DEBUG_AUDIO(" Backend: %s\n", + ma_get_backend_name(device_.pContext->backend)); DEBUG_AUDIO(" Total buffer size: %u frames (%.2fms) [period * periods]\n", - device_.playback.internalPeriodSizeInFrames * device_.playback.internalPeriods, - (float)(device_.playback.internalPeriodSizeInFrames * device_.playback.internalPeriods) / device_.sampleRate * 1000.0f); + device_.playback.internalPeriodSizeInFrames * + device_.playback.internalPeriods, + (float)(device_.playback.internalPeriodSizeInFrames * + device_.playback.internalPeriods) / + device_.sampleRate * 1000.0f); // Calculate expected callback interval if (device_.playback.internalPeriodSizeInFrames > 0) { - const float expected_callback_ms = (float)device_.playback.internalPeriodSizeInFrames / device_.sampleRate * 1000.0f; - DEBUG_AUDIO(" Expected callback interval: %.2fms (based on period size)\n", expected_callback_ms); - DEBUG_AUDIO(" WARNING: If actual callback interval differs, audio corruption may occur!\n"); + const float expected_callback_ms = + (float)device_.playback.internalPeriodSizeInFrames / + device_.sampleRate * 1000.0f; + DEBUG_AUDIO(" Expected callback interval: %.2fms (based on period size)\n", + expected_callback_ms); + DEBUG_AUDIO( + " WARNING: If actual callback interval differs, audio corruption may " + "occur!\n"); } DEBUG_AUDIO("======================================\n\n"); fflush(stderr); |
