summaryrefslogtreecommitdiff
path: root/doc/HOWTO.md
diff options
context:
space:
mode:
authorskal <pascal.massimino@gmail.com>2026-02-10 16:44:39 +0100
committerskal <pascal.massimino@gmail.com>2026-02-10 16:44:39 +0100
commit61104d5b9e1774c11f0dba3b6d6018dabc2bce8f (patch)
tree882e642721984cc921cbe5678fe7905721a2ad40 /doc/HOWTO.md
parent3942653de11542acc4892470243a8a6bf8d5c4f7 (diff)
feat: CNN RGBD→grayscale with 7-channel augmented input
Upgrade CNN architecture to process RGBD input, output grayscale, with 7-channel layer inputs (RGBD + UV coords + grayscale). Architecture changes: - Inner layers: Conv2d(7→4) output RGBD - Final layer: Conv2d(7→1) output grayscale - All inputs normalized to [-1,1] for tanh activation - Removed CoordConv2d in favor of unified 7-channel input Training (train_cnn.py): - SimpleCNN: 7→4 (inner), 7→1 (final) architecture - Forward: Normalize RGBD/coords/gray to [-1,1] - Weight export: array<array<f32, 8>, 36> (inner), array<f32, 8>, 9> (final) - Dataset: Load RGBA (RGBD) input Shaders (cnn_conv3x3.wgsl): - Added cnn_conv3x3_7to4: 7-channel input → RGBD output - Added cnn_conv3x3_7to1: 7-channel input → grayscale output - Both normalize inputs and use flattened weight arrays Documentation: - CNN_EFFECT.md: Updated architecture, training, weight format - CNN_RGBD_GRAYSCALE_SUMMARY.md: Implementation summary - HOWTO.md: Added training command example Next: Train with RGBD input data Co-Authored-By: Claude Sonnet 4.5 <noreply@anthropic.com>
Diffstat (limited to 'doc/HOWTO.md')
-rw-r--r--doc/HOWTO.md8
1 files changed, 8 insertions, 0 deletions
diff --git a/doc/HOWTO.md b/doc/HOWTO.md
index bdc0214..2c813f7 100644
--- a/doc/HOWTO.md
+++ b/doc/HOWTO.md
@@ -86,6 +86,14 @@ make run_util_tests # Utility tests
---
+## Training
+
+```bash
+./training/train_cnn.py --layers 3 --kernel_sizes 3,5,3 --epochs 10000 --batch_size 8 --input training/input/ --target training/output/ --checkpoint-every 1000
+```
+
+---
+
## Timeline
Edit `workspaces/main/timeline.seq`: