summaryrefslogtreecommitdiff
path: root/doc/HOWTO.md
diff options
context:
space:
mode:
authorskal <pascal.massimino@gmail.com>2026-02-15 18:44:17 +0100
committerskal <pascal.massimino@gmail.com>2026-02-15 18:44:17 +0100
commit161a59fa50bb92e3664c389fa03b95aefe349b3f (patch)
tree71548f64b2bdea958388f9063b74137659d70306 /doc/HOWTO.md
parent9c3b72c710bf1ffa7e18f7c7390a425d57487eba (diff)
refactor(cnn): isolate CNN v2 to cnn_v2/ subdirectory
Move all CNN v2 files to dedicated cnn_v2/ directory to prepare for CNN v3 development. Zero functional changes. Structure: - cnn_v2/src/ - C++ effect implementation - cnn_v2/shaders/ - WGSL shaders (6 files) - cnn_v2/weights/ - Binary weights (3 files) - cnn_v2/training/ - Python training scripts (4 files) - cnn_v2/scripts/ - Shell scripts (train_cnn_v2_full.sh) - cnn_v2/tools/ - Validation tools (HTML) - cnn_v2/docs/ - Documentation (4 markdown files) Changes: - Update CMake source list to cnn_v2/src/cnn_v2_effect.cc - Update assets.txt with relative paths to cnn_v2/ - Update includes to ../../cnn_v2/src/cnn_v2_effect.h - Add PROJECT_ROOT resolution to Python/shell scripts - Update doc references in HOWTO.md, TODO.md - Add cnn_v2/README.md Verification: 34/34 tests passing, demo runs correctly. Co-Authored-By: Claude Sonnet 4.5 <noreply@anthropic.com>
Diffstat (limited to 'doc/HOWTO.md')
-rw-r--r--doc/HOWTO.md32
1 files changed, 16 insertions, 16 deletions
diff --git a/doc/HOWTO.md b/doc/HOWTO.md
index 0dc9ec7..a309b27 100644
--- a/doc/HOWTO.md
+++ b/doc/HOWTO.md
@@ -145,31 +145,31 @@ Enhanced CNN with parametric static features (7D input: RGBD + UV + sin encoding
**Complete Pipeline** (recommended):
```bash
# Train → Export → Build → Validate (default config)
-./scripts/train_cnn_v2_full.sh
+./cnn_v2/scripts/train_cnn_v2_full.sh
# Rapid debug (1 layer, 3×3, 5 epochs)
-./scripts/train_cnn_v2_full.sh --num-layers 1 --kernel-sizes 3 --epochs 5 --output-weights test.bin
+./cnn_v2/scripts/train_cnn_v2_full.sh --num-layers 1 --kernel-sizes 3 --epochs 5 --output-weights test.bin
# Custom training parameters
-./scripts/train_cnn_v2_full.sh --epochs 500 --batch-size 32 --checkpoint-every 100
+./cnn_v2/scripts/train_cnn_v2_full.sh --epochs 500 --batch-size 32 --checkpoint-every 100
# Custom architecture
-./scripts/train_cnn_v2_full.sh --kernel-sizes 3,5,3 --num-layers 3 --mip-level 1
+./cnn_v2/scripts/train_cnn_v2_full.sh --kernel-sizes 3,5,3 --num-layers 3 --mip-level 1
# Custom output path
-./scripts/train_cnn_v2_full.sh --output-weights workspaces/test/cnn_weights.bin
+./cnn_v2/scripts/train_cnn_v2_full.sh --output-weights workspaces/test/cnn_weights.bin
# Grayscale loss (compute loss on luminance instead of RGBA)
-./scripts/train_cnn_v2_full.sh --grayscale-loss
+./cnn_v2/scripts/train_cnn_v2_full.sh --grayscale-loss
# Custom directories
-./scripts/train_cnn_v2_full.sh --input training/input --target training/target_2
+./cnn_v2/scripts/train_cnn_v2_full.sh --input training/input --target training/target_2
# Full-image mode (instead of patch-based)
-./scripts/train_cnn_v2_full.sh --full-image --image-size 256
+./cnn_v2/scripts/train_cnn_v2_full.sh --full-image --image-size 256
# See all options
-./scripts/train_cnn_v2_full.sh --help
+./cnn_v2/scripts/train_cnn_v2_full.sh --help
```
**Defaults:** 200 epochs, 3×3 kernels, 8→4→4 channels, batch-size 16, patch-based (8×8, harris detector).
@@ -184,33 +184,33 @@ Enhanced CNN with parametric static features (7D input: RGBD + UV + sin encoding
**Validation Only** (skip training):
```bash
# Use latest checkpoint
-./scripts/train_cnn_v2_full.sh --validate
+./cnn_v2/scripts/train_cnn_v2_full.sh --validate
# Use specific checkpoint
-./scripts/train_cnn_v2_full.sh --validate checkpoints/checkpoint_epoch_50.pth
+./cnn_v2/scripts/train_cnn_v2_full.sh --validate checkpoints/checkpoint_epoch_50.pth
```
**Manual Training:**
```bash
# Default config
-./training/train_cnn_v2.py \
+./cnn_v2/training/train_cnn_v2.py \
--input training/input/ --target training/target_2/ \
--epochs 100 --batch-size 16 --checkpoint-every 5
# Custom architecture (per-layer kernel sizes)
-./training/train_cnn_v2.py \
+./cnn_v2/training/train_cnn_v2.py \
--input training/input/ --target training/target_2/ \
--kernel-sizes 1,3,5 \
--epochs 5000 --batch-size 16
# Mip-level for p0-p3 features (0=original, 1=half, 2=quarter, 3=eighth)
-./training/train_cnn_v2.py \
+./cnn_v2/training/train_cnn_v2.py \
--input training/input/ --target training/target_2/ \
--mip-level 1 \
--epochs 100 --batch-size 16
# Grayscale loss (compute loss on luminance Y = 0.299*R + 0.587*G + 0.114*B)
-./training/train_cnn_v2.py \
+./cnn_v2/training/train_cnn_v2.py \
--input training/input/ --target training/target_2/ \
--grayscale-loss \
--epochs 100 --batch-size 16
@@ -236,7 +236,7 @@ Use `--quiet` for streamlined output in scripts (used automatically by train_cnn
```
-**Validation:** Use HTML tool (`tools/cnn_v2_test/index.html`) for CNN v2 validation. See `doc/CNN_V2_WEB_TOOL.md`.
+**Validation:** Use HTML tool (`cnn_v2/tools/cnn_v2_test/index.html`) for CNN v2 validation. See `cnn_v2/docs/CNN_V2_WEB_TOOL.md`.
---