summaryrefslogtreecommitdiff
path: root/doc/CNN_V2.md
diff options
context:
space:
mode:
authorskal <pascal.massimino@gmail.com>2026-02-13 12:41:35 +0100
committerskal <pascal.massimino@gmail.com>2026-02-13 12:41:35 +0100
commita101d76e3eab4ee4d93357d71e2c7d4e0114f56f (patch)
tree54fa8bcb50bfcfa401fb58fcb2c6ad69c54a6788 /doc/CNN_V2.md
parent561d1dc446db7d1d3e02b92b43abedf1a5017850 (diff)
CNN v2: Restore per-layer kernel sizes support
Training: - train_cnn_v2.py: Accept --kernel-sizes as comma-separated list - CNNv2 model: Per-layer kernel sizes (e.g., [1,3,5]) - Single value replicates across layers (e.g., "3" → [3,3,3]) Export: - export_cnn_v2_weights.py: Backward compatible with old checkpoints - Handles both kernel_size (old) and kernel_sizes (new) format Documentation: - CNN_V2.md: Updated code examples and config format - HOWTO.md: Updated training examples to show comma-separated syntax Binary format: Already supports per-layer kernel sizes (no changes) Co-Authored-By: Claude Sonnet 4.5 <noreply@anthropic.com>
Diffstat (limited to 'doc/CNN_V2.md')
-rw-r--r--doc/CNN_V2.md11
1 files changed, 7 insertions, 4 deletions
diff --git a/doc/CNN_V2.md b/doc/CNN_V2.md
index 4612d7a..6242747 100644
--- a/doc/CNN_V2.md
+++ b/doc/CNN_V2.md
@@ -214,12 +214,15 @@ def compute_static_features(rgb, depth):
```python
class CNNv2(nn.Module):
- def __init__(self, kernel_size=3, num_layers=3):
+ def __init__(self, kernel_sizes, num_layers=3):
super().__init__()
+ if isinstance(kernel_sizes, int):
+ kernel_sizes = [kernel_sizes] * num_layers
+ self.kernel_sizes = kernel_sizes
self.layers = nn.ModuleList()
# All layers: 12D input (4 prev + 8 static) → 4D output
- for i in range(num_layers):
+ for kernel_size in kernel_sizes:
self.layers.append(
nn.Conv2d(12, 4, kernel_size=kernel_size,
padding=kernel_size//2, bias=False)
@@ -247,7 +250,7 @@ class CNNv2(nn.Module):
```python
# Hyperparameters
-kernel_size = 3 # Uniform 3×3 kernels
+kernel_sizes = [3, 3, 3] # Per-layer kernel sizes (e.g., [1,3,5])
num_layers = 3 # Number of CNN layers
learning_rate = 1e-3
batch_size = 16
@@ -278,7 +281,7 @@ for epoch in range(epochs):
torch.save({
'state_dict': model.state_dict(), # f32 weights
'config': {
- 'kernel_size': 3,
+ 'kernel_sizes': [3, 3, 3], # Per-layer kernel sizes
'num_layers': 3,
'features': ['p0', 'p1', 'p2', 'p3', 'uv.x', 'uv.y', 'sin10_x', 'bias']
},