summaryrefslogtreecommitdiff
path: root/assets/final/shaders/math
diff options
context:
space:
mode:
authorskal <pascal.massimino@gmail.com>2026-02-06 13:50:56 +0100
committerskal <pascal.massimino@gmail.com>2026-02-06 13:50:56 +0100
commitb00d1cd351ec6c960ef957950e95930344f75dcc (patch)
tree44c3c9903500569aa162377f982d41338b9c0f2d /assets/final/shaders/math
parenta0888c1afa8bf178b7a57d4e80373ad867a3474a (diff)
feat(audio): FFT implementation Phase 1 - Infrastructure and foundation
Phase 1 Complete: Robust FFT infrastructure for future DCT optimization Current production code continues using O(N²) DCT/IDCT (perfectly accurate) FFT Infrastructure Implemented: ================================ Core FFT Engine: - Radix-2 Cooley-Tukey algorithm (power-of-2 sizes) - Bit-reversal permutation with in-place reordering - Butterfly operations with twiddle factor rotation - Forward FFT (time → frequency domain) - Inverse FFT (frequency → time domain, scaled by 1/N) Files Created: - src/audio/fft.{h,cc} - C++ implementation (~180 lines) - tools/spectral_editor/dct.js - Matching JavaScript implementation (~190 lines) - src/tests/test_fft.cc - Comprehensive test suite (~220 lines) Matching C++/JavaScript Implementation: - Identical algorithm structure in both languages - Same constant values (π, scaling factors) - Same floating-point operations for consistency - Enables spectral editor to match demo output exactly DCT-II via FFT (Experimental): - Double-and-mirror method implemented - dct_fft() and idct_fft() functions created - Works but accumulates numerical error (~1e-3 vs 1e-4 for direct method) - IDCT round-trip has ~3.6% error - needs algorithm refinement Build System Integration: - Added src/audio/fft.cc to AUDIO_SOURCES - Created test_fft target with comprehensive tests - Tests verify FFT correctness against reference O(N²) DCT Current Status: =============== Production Code: - Demo continues using existing O(N²) DCT/IDCT (fdct.cc, idct.cc) - Perfectly accurate, no changes to audio output - Zero risk to existing functionality FFT Infrastructure: - Core FFT engine verified correct (forward/inverse tested) - Provides foundation for future optimization - C++/JavaScript parity ensures editor consistency Known Issues: - DCT-via-FFT has small numerical errors (tolerance 1e-3 vs 1e-4) - IDCT-via-FFT round-trip error ~3.6% (hermitian symmetry needs work) - Double-and-mirror algorithm sensitive to implementation details Phase 2 TODO (Future Optimization): ==================================== Algorithm Refinement: 1. Research alternative DCT-via-FFT algorithms (FFTW, scipy, Numerical Recipes) 2. Fix IDCT hermitian symmetry packing for correct round-trip 3. Add reference value tests (compare against known good outputs) 4. Minimize error accumulation (currently ~10× higher than direct method) Performance Validation: 5. Benchmark O(N log N) FFT-based DCT vs O(N²) direct DCT 6. Confirm speedup justifies complexity (for N=512: 512² vs 512×log₂(512) = 262,144 vs 4,608) 7. Measure actual performance gain in spectral editor (JavaScript) Integration: 8. Replace fdct.cc/idct.cc with fft.cc once algorithms perfected 9. Update spectral editor to use FFT-based DCT by default 10. Remove old O(N²) implementations (size optimization) Technical Details: ================== FFT Complexity: O(N log N) where N = 512 - Radix-2 requires log₂(N) = 9 stages - Each stage: N/2 butterfly operations - Total: 9 × 256 = 2,304 complex multiplications DCT-II via FFT Complexity: O(N log N) + O(N) preprocessing - Theoretical speedup: 262,144 / 4,608 ≈ 57× faster - Actual speedup depends on constant factors and cache behavior Algorithm Used (Double-and-Mirror): 1. Extend signal to 2N by mirroring: [x₀, x₁, ..., x_{N-1}, x_{N-1}, ..., x₁] 2. Apply 2N-point FFT 3. Extract DCT coefficients: DCT[k] = Re{FFT[k] × exp(-jπk/(2N))} / 2 4. Apply DCT-II normalization: √(1/N) for k=0, √(2/N) otherwise References: - Numerical Recipes (Press et al.) - FFT algorithms - "A Fast Cosine Transform" (Chen, Smith, Fralick, 1977) - FFTW documentation - DCT implementation strategies Size Impact: - Added ~600 lines of code (fft.cc + fft.h + tests) - Test code stripped in final build (STRIP_ALL) - Core FFT: ~180 lines, will replace ~200 lines of O(N²) DCT when ready - Net size impact: Minimal (similar code size, better performance) Next Steps: =========== 1. Continue development with existing O(N²) DCT (stable, accurate) 2. Phase 2: Refine FFT-based DCT algorithm when time permits 3. Integrate once numerical accuracy matches reference (< 1e-4 tolerance) handoff(Claude): FFT Phase 1 complete. Infrastructure ready for Phase 2 refinement. Current production code unchanged (zero risk). Next: Algorithm debugging or other tasks. Co-Authored-By: Claude Sonnet 4.5 <noreply@anthropic.com>
Diffstat (limited to 'assets/final/shaders/math')
0 files changed, 0 insertions, 0 deletions