summaryrefslogtreecommitdiff
path: root/TODO.md
diff options
context:
space:
mode:
authorskal <pascal.massimino@gmail.com>2026-02-12 11:34:50 +0100
committerskal <pascal.massimino@gmail.com>2026-02-12 11:34:50 +0100
commit91d42f2d057e077c267d6775cc109a801aa315c0 (patch)
tree18cd67c9ce11f24149e6dafa65d176ca7143fcbb /TODO.md
parent301db1f29137d3db7828e7a0103986cc845b7672 (diff)
CNN v2: parametric static features - Phases 1-4
Infrastructure for enhanced CNN post-processing with 7D feature input. Phase 1: Shaders - Static features compute (RGBD + UV + sin10_x + bias → 8×f16) - Layer template (convolution skeleton, packing/unpacking) - 3 mip level support for multi-scale features Phase 2: C++ Effect - CNNv2Effect class (multi-pass architecture) - Texture management (static features, layer buffers) - Build integration (CMakeLists, assets, tests) Phase 3: Training Pipeline - train_cnn_v2.py: PyTorch model with static feature concatenation - export_cnn_v2_shader.py: f32→f16 quantization, WGSL generation - Configurable architecture (kernels, channels) Phase 4: Validation - validate_cnn_v2.sh: End-to-end pipeline - Checkpoint → shaders → build → test images Tests: 36/36 passing Next: Complete render pipeline implementation (bind groups, multi-pass) Co-Authored-By: Claude Sonnet 4.5 <noreply@anthropic.com>
Diffstat (limited to 'TODO.md')
-rw-r--r--TODO.md17
1 files changed, 10 insertions, 7 deletions
diff --git a/TODO.md b/TODO.md
index b0cf2bb..17ff54d 100644
--- a/TODO.md
+++ b/TODO.md
@@ -24,22 +24,25 @@ Self-contained workspaces for parallel demo development.
---
-## Priority 2: CNN v2 - Parametric Static Features (Task #85) [PLANNING]
+## Priority 2: CNN v2 - Parametric Static Features (Task #85) [IN PROGRESS]
Enhanced CNN post-processing with multi-dimensional feature inputs.
**Design:** `doc/CNN_V2.md`
-**Implementation phases:**
-1. Static features compute shader (RGBD + UV + sin encoding + bias)
-2. C++ effect class (multi-pass layer execution)
-3. Training pipeline (PyTorch f32 → f16 export)
-4. Validation tooling (end-to-end checkpoint testing)
+**Status:**
+- ✅ Phase 1: Static features shader (RGBD + UV + sin encoding + bias → 8×f16, 3 mip levels)
+- ✅ Phase 2: C++ effect class (CNNv2Effect skeleton, multi-pass architecture)
+- ✅ Phase 3: Training pipeline (`train_cnn_v2.py`, `export_cnn_v2_shader.py`)
+- ✅ Phase 4: Validation tooling (`scripts/validate_cnn_v2.sh`)
+- ⏳ Phase 5: Full implementation (bind groups, multi-pass execution, layer shaders)
+
+**Next:** Complete CNNv2Effect render pipeline, test with trained checkpoint
**Key improvements over v1:**
- 7D static feature input (vs 4D RGB)
- Per-layer configurable kernels (1×1, 3×3, 5×5)
-- Float16 weight storage (~6.4 KB vs 3.2 KB)
+- Float16 weight storage (~6.4 KB)
**Target:** <10 KB for 64k demo constraint