summaryrefslogtreecommitdiff
path: root/src/tests/test_maths.cc
blob: 03b2a4c44d5a8cda1b4b01bf3ee57f528b1836b2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
#include "util/mini_math.h"
#include <iostream>
#include <vector>
#include <cassert>
#include <cmath>

// Checks if two floats are approximately equal
bool near(float a, float b, float e = 0.001f) { return std::abs(a - b) < e; }

// Generic test runner for any vector type (vec2, vec3, vec4)
template<typename T>
void test_vector_ops(int n) {
    T a, b;
    // Set values
    for(int i=0; i<n; ++i) { a[i] = (float)(i + 1); b[i] = 10.0f; }

    // Add
    T c = a + b;
    for(int i=0; i<n; ++i) assert(near(c[i], (float)(i + 1) + 10.0f));

    // Scale
    T s = a * 2.0f;
    for(int i=0; i<n; ++i) assert(near(s[i], (float)(i + 1) * 2.0f));

    // Dot Product
    // vec3(1,2,3) . vec3(1,2,3) = 1+4+9 = 14
    float expected_dot = 0;
    for(int i=0; i<n; ++i) expected_dot += a[i] * a[i];
    assert(near(T::dot(a, a), expected_dot));

    // Norm (Length)
    assert(near(a.norm(), std::sqrt(expected_dot)));

    // Normalize
    T n_vec = a.normalize();
    assert(near(n_vec.norm(), 1.0f));

    // Lerp
    T l = lerp(a, b, 0.3f);
    for(int i=0; i<n; ++i) assert(near(l[i], .7 * (i+1) + .3 * 10.0f));
}

// Specific test for padding alignment in vec3
void test_vec3_special() {
    std::cout << "Testing vec3 alignment..." << std::endl;
    // Verify sizeof is 16 bytes (4 floats) due to padding for WebGPU
    assert(sizeof(vec3) == 16);

    vec3 v(1, 0, 0);
    vec3 v2(0, 1, 0);

    // Cross Product
    vec3 c = vec3::cross(v, v2);
    assert(near(c.x, 0) && near(c.y, 0) && near(c.z, 1));
}

// Tests quaternion rotation, look_at, and slerp
void test_quat() {
    std::cout << "Testing Quat..." << std::endl;

    // Rotation (Rodrigues)
    vec3 v(1, 0, 0);
    quat q = quat::from_axis({0, 1, 0}, 1.5708f); // 90 deg Y
    vec3 r = q.rotate(v);
    assert(near(r.x, 0) && near(r.z, -1));

    // Look At
    // Looking from origin to +X, with +Y as up.
    // The local forward vector (0,0,-1) should be transformed to (1,0,0)
    quat l = quat::look_at({0,0,0}, {10,0,0}, {0,1,0});
    vec3 f = l.rotate({0,0,-1});
    assert(near(f.x, 1.0f) && near(f.y, 0.0f) && near(f.z, 0.0f));

    // Slerp Midpoint
    quat q1(0,0,0,1);
    quat q2 = quat::from_axis({0,1,0}, 1.5708f); // 90 deg
    quat mid = slerp(q1, q2, 0.5f); // 45 deg
    assert(near(mid.y, 0.3826f)); // sin(pi/8)
}

// Tests WebGPU specific matrices
void test_matrices() {
    std::cout << "Testing Matrices..." << std::endl;
    float n = 0.1f, f = 100.0f;
    mat4 p = mat4::perspective(0.785f, 1.0f, n, f);

    // Check WebGPU Z-range [0, 1]
    // Z_ndc = (m10 * Z_view + m14) / -Z_view
    float z_near = (p.m[10] * -n + p.m[14]) / n;
    float z_far  = (p.m[10] * -f + p.m[14]) / f;
    assert(near(z_near, 0.0f));
    assert(near(z_far, 1.0f));

    // Test mat4::look_at
    vec3 eye(0, 0, 5);
    vec3 target(0, 0, 0);
    vec3 up(0, 1, 0);
    mat4 view = mat4::look_at(eye, target, up);
    // Point (0,0,0) in world should be at (0,0,-5) in view space
    assert(near(view.m[14], -5.0f));
}

// Tests easing curves
void test_ease() {
    std::cout << "Testing Easing..." << std::endl;
    // Boundary tests
    assert(near(ease::out_cubic(0.0f), 0.0f));
    assert(near(ease::out_cubic(1.0f), 1.0f));
    assert(near(ease::in_out_quad(0.0f), 0.0f));
    assert(near(ease::in_out_quad(1.0f), 1.0f));

    // Midpoint/Logic tests
    assert(ease::out_cubic(0.5f) > 0.5f); // Out curves should exceed linear value early
    assert(near(ease::in_out_quad(0.5f), 0.5f)); // Symmetric curves hit 0.5 at 0.5
}

// Tests spring solver
void test_spring() {
    std::cout << "Testing Spring..." << std::endl;
    float p = 0, v = 0;
    // Simulate approx 1 sec with 0.5s smooth time
    for(int i=0; i<60; ++i) spring::solve(p, v, 10.0f, 0.5f, 0.016f);
    assert(p > 8.5f);

    // Test vector spring
    vec3 vp(0,0,0), vv(0,0,0), vt(10,0,0);
    spring::solve(vp, vv, vt, 0.5f, 0.016f * 60.0f); // 1 huge step approx
    assert(vp.x > 1.0f); // Should have moved significantly
}

int main() {
    std::cout << "Testing vec2..." << std::endl;
    test_vector_ops<vec2>(2);

    std::cout << "Testing vec3..." << std::endl;
    test_vector_ops<vec3>(3);
    test_vec3_special();

    std::cout << "Testing vec4..." << std::endl;
    test_vector_ops<vec4>(4);

    test_quat();
    test_matrices();
    test_ease();
    test_spring();

    std::cout << "--- ALL TESTS PASSED ---" << std::endl;
    return 0;
}