summaryrefslogtreecommitdiff
path: root/src/tests/test_3d_render.cc
blob: e8a6bf14f825b7b9d17ef3b3911e098aac4bf1cc (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
// This file is part of the 64k demo project.
// Standalone "mini-demo" for testing the 3D renderer.

#include "3d/camera.h"
#include "3d/object.h"
#include "3d/renderer.h"
#include "3d/scene.h"
#include "gpu/texture_manager.h"
#include "platform.h"
#include "procedural/generator.h"
#include <cmath>
#include <cstring>
#include <iostream>
#include <vector>

#if defined(DEMO_CROSS_COMPILE_WIN32)
#include <webgpu/webgpu.h>
#else
#include <webgpu.h>
#endif

// Global State
static Renderer3D g_renderer;
static TextureManager g_textures;
static Scene g_scene;
static Camera g_camera;
static WGPUDevice g_device = nullptr;
static WGPUQueue g_queue = nullptr;
static WGPUSurface g_surface = nullptr;
static WGPUAdapter g_adapter = nullptr;
static WGPUTextureFormat g_format = WGPUTextureFormat_Undefined;

// ... (init_wgpu implementation same as before)
void init_wgpu(PlatformState* platform_state) {
  WGPUInstance instance = wgpuCreateInstance(nullptr);
  if (!instance) {
    std::cerr << "Failed to create WGPU instance." << std::endl;
    exit(1);
  }

  g_surface = platform_create_wgpu_surface(instance, platform_state);
  if (!g_surface) {
    std::cerr << "Failed to create WGPU surface." << std::endl;
    exit(1);
  }

  WGPURequestAdapterOptions adapter_opts = {};
  adapter_opts.compatibleSurface = g_surface;
  adapter_opts.powerPreference = WGPUPowerPreference_HighPerformance;

#if defined(DEMO_CROSS_COMPILE_WIN32)
  auto on_adapter = [](WGPURequestAdapterStatus status, WGPUAdapter adapter,
                       const char* message, void* userdata) {
    if (status == WGPURequestAdapterStatus_Success) {
      *(WGPUAdapter*)userdata = adapter;
    }
  };
  wgpuInstanceRequestAdapter(instance, &adapter_opts, on_adapter, &g_adapter);
#else
  auto on_adapter = [](WGPURequestAdapterStatus status, WGPUAdapter adapter,
                       WGPUStringView message, void* userdata, void* user2) {
    if (status == WGPURequestAdapterStatus_Success) {
      *(WGPUAdapter*)userdata = adapter;
    }
  };
  WGPURequestAdapterCallbackInfo adapter_cb = {};
  adapter_cb.mode = WGPUCallbackMode_WaitAnyOnly;
  adapter_cb.callback = on_adapter;
  adapter_cb.userdata1 = &g_adapter;
  wgpuInstanceRequestAdapter(instance, &adapter_opts, adapter_cb);
#endif

#if !defined(DEMO_CROSS_COMPILE_WIN32)
  while (!g_adapter) {
    wgpuInstanceProcessEvents(instance);
  }
#endif

  if (!g_adapter) {
    std::cerr << "Failed to get adapter." << std::endl;
    exit(1);
  }

  WGPUDeviceDescriptor device_desc = {};

#if defined(DEMO_CROSS_COMPILE_WIN32)
  auto on_device = [](WGPURequestDeviceStatus status, WGPUDevice device,
                      const char* message, void* userdata) {
    if (status == WGPURequestDeviceStatus_Success) {
      *(WGPUDevice*)userdata = device;
    }
  };
  wgpuAdapterRequestDevice(g_adapter, &device_desc, on_device, &g_device);
#else
  auto on_device = [](WGPURequestDeviceStatus status, WGPUDevice device,
                      WGPUStringView message, void* userdata, void* user2) {
    if (status == WGPURequestDeviceStatus_Success) {
      *(WGPUDevice*)userdata = device;
    }
  };
  WGPURequestDeviceCallbackInfo device_cb = {};
  device_cb.mode = WGPUCallbackMode_WaitAnyOnly;
  device_cb.callback = on_device;
  device_cb.userdata1 = &g_device;
  wgpuAdapterRequestDevice(g_adapter, &device_desc, device_cb);
#endif

#if !defined(DEMO_CROSS_COMPILE_WIN32)
  while (!g_device) {
    wgpuInstanceProcessEvents(instance);
  }
#endif

  if (!g_device) {
    std::cerr << "Failed to get device." << std::endl;
    exit(1);
  }

  g_queue = wgpuDeviceGetQueue(g_device);

  WGPUSurfaceCapabilities caps = {};
  wgpuSurfaceGetCapabilities(g_surface, g_adapter, &caps);
  g_format = caps.formats[0];

  WGPUSurfaceConfiguration config = {};
  config.device = g_device;
  config.format = g_format;
  config.usage = WGPUTextureUsage_RenderAttachment;
  config.width = platform_state->width;
  config.height = platform_state->height;
  config.presentMode = WGPUPresentMode_Fifo;
  config.alphaMode = WGPUCompositeAlphaMode_Opaque;
  wgpuSurfaceConfigure(g_surface, &config);
}

void setup_scene() {
  g_scene.clear();
  srand(12345); // Fixed seed

  // Large floor, use CUBE type to exclude from SDF calculations
  Object3D floor(ObjectType::CUBE);
  floor.position = vec3(0, -2.0f, 0);
  floor.scale = vec3(20.0f, 0.5f, 20.0f);
  floor.color =
      vec4(0.9f, 0.9f, 0.9f, 1.0f); // Brighter white for better shadow contrast
  g_scene.add_object(floor);

  // Center object
  Object3D center(ObjectType::TORUS);
  center.position = vec3(0, 0, 0);
  center.scale = vec3(1.5f, 1.5f, 1.5f);
  center.color = vec4(1, 0, 0, 1);
  g_scene.add_object(center);

  // Random objects
  for (int i = 0; i < 30; ++i) {
    ObjectType type = ObjectType::SPHERE;
    int r = rand() % 3;
    if (r == 1)
      type = ObjectType::TORUS;
    if (r == 2)
      type = ObjectType::BOX;

    Object3D obj(type);
    float angle = (rand() % 360) * 0.01745f;
    float dist = 3.0f + (rand() % 100) * 0.05f;
    float height = -1.0f + (rand() % 100) * 0.04f;

    obj.position = vec3(std::cos(angle) * dist, height, std::sin(angle) * dist);

    float s = 0.3f + (rand() % 100) * 0.005f;
    obj.scale = vec3(s, s, s);

    obj.color = vec4((rand() % 100) / 100.0f, (rand() % 100) / 100.0f,
                     (rand() % 100) / 100.0f, 1.0f);

    g_scene.add_object(obj);
  }
}

// Wrapper to generate periodic noise
void gen_periodic_noise(uint8_t* buffer, int w, int h, const float* params,
                        int num_params) {
  procedural::gen_noise(buffer, w, h, params, num_params);
  float p_params[] = {0.1f}; // 10% overlap
  procedural::make_periodic(buffer, w, h, p_params, 1);
}

int main(int argc, char** argv) {
  printf("Running 3D Renderer Test...\n");

#if !defined(STRIP_ALL)
  for (int i = 1; i < argc; ++i) {
    if (strcmp(argv[i], "--debug") == 0) {
      Renderer3D::SetDebugEnabled(true);
    }
  }
#else
  (void)argc;
  (void)argv;
#endif

  PlatformState platform_state = {};
  platform_init(&platform_state, false, nullptr, nullptr);

  // The test's own WGPU init sequence
  init_wgpu(&platform_state);

  g_renderer.init(g_device, g_queue, g_format);
  g_renderer.resize(platform_state.width, platform_state.height);

  g_textures.init(g_device, g_queue);
  ProceduralTextureDef noise_def;
  noise_def.width = 256;
  noise_def.height = 256;
  noise_def.gen_func = gen_periodic_noise;
  noise_def.params = {1234.0f, 16.0f};
  g_textures.create_procedural_texture("noise", noise_def);

  g_renderer.set_noise_texture(g_textures.get_texture_view("noise"));

  setup_scene();

  g_camera.position = vec3(0, 5, 10);
  g_camera.target = vec3(0, 0, 0);

  float time = 0.0f;
  while (!platform_should_close(&platform_state)) {
    platform_poll(&platform_state);
    time = (float)platform_get_time();

    float cam_radius = 10.0f + std::sin(time * 0.3f) * 4.0f;
    float cam_height = 5.0f + std::cos(time * 0.4f) * 3.0f;
    g_camera.set_look_at(vec3(std::sin(time * 0.5f) * cam_radius, cam_height,
                              std::cos(time * 0.5f) * cam_radius),
                         vec3(0, 0, 0), vec3(0, 1, 0));
    g_camera.aspect_ratio = platform_get_aspect_ratio(&platform_state);

    for (size_t i = 1; i < g_scene.objects.size(); ++i) {
      g_scene.objects[i].rotation =
          quat::from_axis(vec3(0, 1, 0), time * 2.0f + i);
      g_scene.objects[i].position.y = std::sin(time * 3.0f + i) * 1.5f;
    }

    WGPUSurfaceTexture surface_tex;
    wgpuSurfaceGetCurrentTexture(g_surface, &surface_tex);
    if (surface_tex.status ==
        WGPUSurfaceGetCurrentTextureStatus_SuccessOptimal) {
      WGPUTextureViewDescriptor view_desc = {};
      view_desc.format = g_format;
      view_desc.dimension = WGPUTextureViewDimension_2D;
      view_desc.mipLevelCount = 1;
      view_desc.arrayLayerCount = 1;
      WGPUTextureView view =
          wgpuTextureCreateView(surface_tex.texture, &view_desc);
      g_renderer.render(g_scene, g_camera, time, view);
      wgpuTextureViewRelease(view);
      wgpuSurfacePresent(g_surface);
      wgpuTextureRelease(surface_tex.texture);
    }
  }

  g_renderer.shutdown();
  g_textures.shutdown();
  platform_shutdown(&platform_state);
  return 0;
}