1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
|
// This file is part of the 64k demo project.
// It implements the procedural audio generation logic.
// Uses IDCT/FDCT to synthesize notes in the frequency domain.
#include "audio/gen.h"
#include "audio/dct.h"
#include "audio/window.h"
#include <math.h>
#include <stdlib.h>
#include <string.h>
std::vector<float> generate_note_spectrogram(const NoteParams ¶ms,
int *out_num_frames) {
int num_frames = (int)(params.duration_sec * 32000.0f / DCT_SIZE);
if (num_frames < 1)
num_frames = 1;
*out_num_frames = num_frames;
std::vector<float> spec_data(num_frames * DCT_SIZE, 0.0f);
float window[WINDOW_SIZE];
hamming_window_512(window);
float phase = 0.0f;
float time_step = 1.0f / 32000.0f;
for (int f = 0; f < num_frames; ++f) {
float pcm_chunk[DCT_SIZE] = {0};
float frame_time = f * DCT_SIZE * time_step;
// Generate PCM for this frame
for (int i = 0; i < DCT_SIZE; ++i) {
float t = frame_time + i * time_step;
// Envelope (Simple Attack)
float env = 1.0f;
if (t < params.attack_sec) {
env = t / params.attack_sec;
}
// Vibrato
float vib =
sinf(t * params.vibrato_rate * 2.0f * 3.14159f) * params.vibrato_depth;
// Randomness
float pitch_rnd =
((float)rand() / RAND_MAX - 0.5f) * params.pitch_randomness;
float amp_rnd = ((float)rand() / RAND_MAX - 0.5f) * params.amp_randomness;
float sample = 0.0f;
for (int h = 1; h <= params.num_harmonics; ++h) {
float h_amp = powf(params.harmonic_decay, h - 1);
float freq = (params.base_freq + vib + pitch_rnd) * h;
sample += sinf(phase * h) * h_amp;
}
// Update phase for fundamental (approximate, since freq changes)
phase +=
(params.base_freq + vib + pitch_rnd) * 2.0f * 3.14159f * time_step;
pcm_chunk[i] = sample * params.amplitude * env * (1.0f + amp_rnd);
}
// Apply window
for (int i = 0; i < DCT_SIZE; ++i) {
pcm_chunk[i] *= window[i];
}
// Apply FDCT
float dct_chunk[DCT_SIZE];
fdct_512(pcm_chunk, dct_chunk);
// Copy to buffer
for (int i = 0; i < DCT_SIZE; ++i) {
spec_data[f * DCT_SIZE + i] = dct_chunk[i];
}
}
return spec_data;
}
void paste_spectrogram(std::vector<float> &dest_data, int *dest_num_frames,
const std::vector<float> &src_data, int src_num_frames,
int frame_offset) {
if (src_num_frames <= 0)
return;
int needed_frames = frame_offset + src_num_frames;
if (needed_frames > *dest_num_frames) {
dest_data.resize(needed_frames * DCT_SIZE, 0.0f);
*dest_num_frames = needed_frames;
}
for (int f = 0; f < src_num_frames; ++f) {
int dst_frame_idx = frame_offset + f;
if (dst_frame_idx < 0)
continue;
for (int i = 0; i < DCT_SIZE; ++i) {
dest_data[dst_frame_idx * DCT_SIZE + i] += src_data[f * DCT_SIZE + i];
}
}
}
void apply_spectral_noise(std::vector<float> &data, int num_frames,
float amount) {
for (int f = 0; f < num_frames; ++f) {
for (int i = 0; i < DCT_SIZE; ++i) {
float rnd = ((float)rand() / RAND_MAX - 0.5f) * 2.0f * amount;
data[f * DCT_SIZE + i] *= (1.0f + rnd);
}
}
}
void apply_spectral_lowpass(std::vector<float> &data, int num_frames,
float cutoff_ratio) {
int cutoff_bin = (int)(cutoff_ratio * DCT_SIZE);
if (cutoff_bin < 0)
cutoff_bin = 0;
if (cutoff_bin >= DCT_SIZE)
return;
for (int f = 0; f < num_frames; ++f) {
for (int i = cutoff_bin; i < DCT_SIZE; ++i) {
data[f * DCT_SIZE + i] = 0.0f;
}
}
}
void apply_spectral_comb(std::vector<float> &data, int num_frames,
float period_bins, float depth) {
for (int i = 0; i < DCT_SIZE; ++i) {
float mod =
1.0f - depth * (0.5f + 0.5f * cosf((float)i / period_bins * 6.28318f));
for (int f = 0; f < num_frames; ++f) {
data[f * DCT_SIZE + i] *= mod;
}
}
}
|