1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
|
// This file is part of the 64k demo project.
// It implements the Renderer3D class.
#include "3d/renderer.h"
#include <iostream>
#include <cstring>
// Simple Cube Geometry (Triangle list)
// 36 vertices
static const float kCubeVertices[] = {
// Front face
-1.0, -1.0, 1.0,
1.0, -1.0, 1.0,
1.0, 1.0, 1.0,
-1.0, -1.0, 1.0,
1.0, 1.0, 1.0,
-1.0, 1.0, 1.0,
// Back face
-1.0, -1.0, -1.0,
-1.0, 1.0, -1.0,
1.0, 1.0, -1.0,
-1.0, -1.0, -1.0,
1.0, 1.0, -1.0,
1.0, -1.0, -1.0,
// Top face
-1.0, 1.0, -1.0,
-1.0, 1.0, 1.0,
1.0, 1.0, 1.0,
-1.0, 1.0, -1.0,
1.0, 1.0, 1.0,
1.0, 1.0, -1.0,
// Bottom face
-1.0, -1.0, -1.0,
1.0, -1.0, -1.0,
1.0, -1.0, 1.0,
-1.0, -1.0, -1.0,
1.0, -1.0, 1.0,
-1.0, -1.0, 1.0,
// Right face
1.0, -1.0, -1.0,
1.0, 1.0, -1.0,
1.0, 1.0, 1.0,
1.0, -1.0, -1.0,
1.0, 1.0, 1.0,
1.0, -1.0, 1.0,
// Left face
-1.0, -1.0, -1.0,
-1.0, -1.0, 1.0,
-1.0, 1.0, 1.0,
-1.0, -1.0, -1.0,
-1.0, 1.0, 1.0,
-1.0, 1.0, -1.0,
};
static const char* kShaderCode = R"(
struct GlobalUniforms {
view_proj: mat4x4<f32>,
camera_pos: vec3<f32>,
time: f32,
};
struct ObjectData {
model: mat4x4<f32>,
color: vec4<f32>,
params: vec4<f32>,
};
struct ObjectsBuffer {
objects: array<ObjectData>,
};
@group(0) @binding(0) var<uniform> globals: GlobalUniforms;
@group(0) @binding(1) var<storage, read> object_data: ObjectsBuffer;
struct VertexOutput {
@builtin(position) position: vec4<f32>,
@location(0) local_pos: vec3<f32>,
@location(1) color: vec4<f32>,
};
@vertex
fn vs_main(@builtin(vertex_index) vertex_index: u32,
@builtin(instance_index) instance_index: u32) -> VertexOutput {
// Hardcoded cube vertices (similar to C++ array but in shader for simplicity if desired,
// but here we might assume a vertex buffer or just generate logic.
// For this demo, let's use the buffer-less approach for vertices if we want to save space,
// but we have a C++ array. Let's just generate a cube on the fly from index?)
// Actually, let's map the C++ kCubeVertices to a vertex buffer or use a hardcoded array here.
// For 64k size, hardcoded in shader is good.
var pos = array<vec3<f32>, 36>(
vec3(-1.0, -1.0, 1.0), vec3( 1.0, -1.0, 1.0), vec3( 1.0, 1.0, 1.0),
vec3(-1.0, -1.0, 1.0), vec3( 1.0, 1.0, 1.0), vec3(-1.0, 1.0, 1.0),
vec3(-1.0, -1.0, -1.0), vec3(-1.0, 1.0, -1.0), vec3( 1.0, 1.0, -1.0),
vec3(-1.0, -1.0, -1.0), vec3( 1.0, 1.0, -1.0), vec3( 1.0, -1.0, -1.0),
vec3(-1.0, 1.0, -1.0), vec3(-1.0, 1.0, 1.0), vec3( 1.0, 1.0, 1.0),
vec3(-1.0, 1.0, -1.0), vec3( 1.0, 1.0, 1.0), vec3( 1.0, 1.0, -1.0),
vec3(-1.0, -1.0, -1.0), vec3( 1.0, -1.0, -1.0), vec3( 1.0, -1.0, 1.0),
vec3(-1.0, -1.0, -1.0), vec3( 1.0, -1.0, 1.0), vec3(-1.0, -1.0, 1.0),
vec3( 1.0, -1.0, -1.0), vec3( 1.0, 1.0, -1.0), vec3( 1.0, 1.0, 1.0),
vec3( 1.0, -1.0, -1.0), vec3( 1.0, 1.0, 1.0), vec3( 1.0, -1.0, 1.0),
vec3(-1.0, -1.0, -1.0), vec3(-1.0, -1.0, 1.0), vec3(-1.0, 1.0, 1.0),
vec3(-1.0, -1.0, -1.0), vec3(-1.0, 1.0, 1.0), vec3(-1.0, 1.0, -1.0)
);
let p = pos[vertex_index];
let obj = object_data.objects[instance_index];
// Model -> World -> Clip
let world_pos = obj.model * vec4<f32>(p, 1.0);
let clip_pos = globals.view_proj * world_pos;
var out: VertexOutput;
out.position = clip_pos;
out.local_pos = p;
out.color = obj.color;
return out;
}
@fragment
fn fs_main(in: VertexOutput) -> @location(0) vec4<f32> {
// Simple wireframe-ish effect using barycentric coords logic?
// Or just check proximity to edge of local cube?
let d = abs(in.local_pos);
let edge_dist = max(max(d.x, d.y), d.z);
// Mix object color with edge highlight
var col = in.color.rgb;
if (edge_dist > 0.95) {
col = vec3<f32>(1.0, 1.0, 1.0); // White edges
} else {
// Simple shading
let normal = normalize(cross(dpdx(in.local_pos), dpdy(in.local_pos)));
let light = normalize(vec3<f32>(0.5, 1.0, 0.5));
let diff = max(dot(normal, light), 0.2);
col = col * diff;
}
return vec4<f32>(col, 1.0);
}
)";
void Renderer3D::init(WGPUDevice device, WGPUQueue queue, WGPUTextureFormat format) {
device_ = device;
queue_ = queue;
format_ = format;
create_default_resources();
create_pipeline();
}
void Renderer3D::shutdown() {
if (pipeline_) wgpuRenderPipelineRelease(pipeline_);
if (bind_group_) wgpuBindGroupRelease(bind_group_);
if (global_uniform_buffer_) wgpuBufferRelease(global_uniform_buffer_);
if (object_storage_buffer_) wgpuBufferRelease(object_storage_buffer_);
if (depth_view_) wgpuTextureViewRelease(depth_view_);
if (depth_texture_) wgpuTextureRelease(depth_texture_);
}
void Renderer3D::resize(int width, int height) {
if (width == width_ && height == height_) return;
width_ = width;
height_ = height;
if (depth_view_) wgpuTextureViewRelease(depth_view_);
if (depth_texture_) wgpuTextureRelease(depth_texture_);
WGPUTextureDescriptor desc = {};
desc.usage = WGPUTextureUsage_RenderAttachment;
desc.dimension = WGPUTextureDimension_2D;
desc.size = {(uint32_t)width, (uint32_t)height, 1};
desc.format = WGPUTextureFormat_Depth24Plus; // Common depth format
desc.mipLevelCount = 1;
desc.sampleCount = 1;
depth_texture_ = wgpuDeviceCreateTexture(device_, &desc);
WGPUTextureViewDescriptor view_desc = {};
view_desc.format = WGPUTextureFormat_Depth24Plus;
view_desc.dimension = WGPUTextureViewDimension_2D;
view_desc.aspect = WGPUTextureAspect_DepthOnly;
view_desc.arrayLayerCount = 1;
view_desc.mipLevelCount = 1;
depth_view_ = wgpuTextureCreateView(depth_texture_, &view_desc);
}
void Renderer3D::create_default_resources() {
// Uniform Buffer
global_uniform_buffer_ = gpu_create_buffer(device_, sizeof(GlobalUniforms),
WGPUBufferUsage_Uniform | WGPUBufferUsage_CopyDst, nullptr).buffer;
// Storage Buffer
size_t storage_size = sizeof(ObjectData) * kMaxObjects;
object_storage_buffer_ = gpu_create_buffer(device_, storage_size,
WGPUBufferUsage_Storage | WGPUBufferUsage_CopyDst, nullptr).buffer;
}
void Renderer3D::create_pipeline() {
// Bind Group Layout
WGPUBindGroupLayoutEntry entries[2] = {};
// Binding 0: Globals (Uniform)
entries[0].binding = 0;
entries[0].visibility = WGPUShaderStage_Vertex | WGPUShaderStage_Fragment;
entries[0].buffer.type = WGPUBufferBindingType_Uniform;
entries[0].buffer.minBindingSize = sizeof(GlobalUniforms);
// Binding 1: Object Data (Storage)
entries[1].binding = 1;
entries[1].visibility = WGPUShaderStage_Vertex | WGPUShaderStage_Fragment;
entries[1].buffer.type = WGPUBufferBindingType_ReadOnlyStorage;
entries[1].buffer.minBindingSize = sizeof(ObjectData) * kMaxObjects;
WGPUBindGroupLayoutDescriptor bgl_desc = {};
bgl_desc.entryCount = 2;
bgl_desc.entries = entries;
WGPUBindGroupLayout bgl = wgpuDeviceCreateBindGroupLayout(device_, &bgl_desc);
// Bind Group
WGPUBindGroupEntry bg_entries[2] = {};
bg_entries[0].binding = 0;
bg_entries[0].buffer = global_uniform_buffer_;
bg_entries[0].size = sizeof(GlobalUniforms);
bg_entries[1].binding = 1;
bg_entries[1].buffer = object_storage_buffer_;
bg_entries[1].size = sizeof(ObjectData) * kMaxObjects;
WGPUBindGroupDescriptor bg_desc = {};
bg_desc.layout = bgl;
bg_desc.entryCount = 2;
bg_desc.entries = bg_entries;
bind_group_ = wgpuDeviceCreateBindGroup(device_, &bg_desc);
// Pipeline Layout
WGPUPipelineLayoutDescriptor pl_desc = {};
pl_desc.bindGroupLayoutCount = 1;
pl_desc.bindGroupLayouts = &bgl;
WGPUPipelineLayout pipeline_layout = wgpuDeviceCreatePipelineLayout(device_, &pl_desc);
// Shader Code
const char* shader_source = kShaderCode;
// Shader Module
#if defined(DEMO_CROSS_COMPILE_WIN32)
WGPUShaderModuleWGSLDescriptor wgsl_desc = {};
wgsl_desc.chain.sType = WGPUSType_ShaderModuleWGSLDescriptor;
wgsl_desc.code = shader_source;
WGPUShaderModuleDescriptor shader_desc = {};
shader_desc.nextInChain = (const WGPUChainedStruct*)&wgsl_desc.chain;
#else
WGPUShaderSourceWGSL wgsl_desc = {};
wgsl_desc.chain.sType = WGPUSType_ShaderSourceWGSL;
wgsl_desc.code = {shader_source, strlen(shader_source)};
WGPUShaderModuleDescriptor shader_desc = {};
shader_desc.nextInChain = (const WGPUChainedStruct*)&wgsl_desc.chain;
#endif
WGPUShaderModule shader_module = wgpuDeviceCreateShaderModule(device_, &shader_desc);
// Depth Stencil State
WGPUDepthStencilState depth_stencil = {};
depth_stencil.format = WGPUTextureFormat_Depth24Plus;
depth_stencil.depthWriteEnabled = WGPUOptionalBool_True;
depth_stencil.depthCompare = WGPUCompareFunction_Less;
// Render Pipeline
WGPURenderPipelineDescriptor desc = {};
desc.layout = pipeline_layout;
// Vertex
desc.vertex.module = shader_module;
#if defined(DEMO_CROSS_COMPILE_WIN32)
desc.vertex.entryPoint = "vs_main";
#else
desc.vertex.entryPoint = {"vs_main", 7};
#endif
// Fragment
WGPUColorTargetState color_target = {};
color_target.format = format_;
color_target.writeMask = WGPUColorWriteMask_All;
WGPUFragmentState fragment = {};
fragment.module = shader_module;
#if defined(DEMO_CROSS_COMPILE_WIN32)
fragment.entryPoint = "fs_main";
#else
fragment.entryPoint = {"fs_main", 7};
#endif
fragment.targetCount = 1;
fragment.targets = &color_target;
desc.fragment = &fragment;
desc.primitive.topology = WGPUPrimitiveTopology_TriangleList;
desc.primitive.cullMode = WGPUCullMode_Back;
desc.primitive.frontFace = WGPUFrontFace_CCW;
desc.depthStencil = &depth_stencil;
desc.multisample.count = 1;
desc.multisample.mask = 0xFFFFFFFF;
pipeline_ = wgpuDeviceCreateRenderPipeline(device_, &desc);
wgpuBindGroupLayoutRelease(bgl);
wgpuPipelineLayoutRelease(pipeline_layout);
wgpuShaderModuleRelease(shader_module);
}
void Renderer3D::update_uniforms(const Scene& scene, const Camera& camera, float time) {
// Update Globals
GlobalUniforms globals;
globals.view_proj = camera.get_projection_matrix() * camera.get_view_matrix();
globals.camera_pos = camera.position;
globals.time = time;
wgpuQueueWriteBuffer(queue_, global_uniform_buffer_, 0, &globals, sizeof(GlobalUniforms));
// Update Objects
std::vector<ObjectData> obj_data;
obj_data.reserve(scene.objects.size());
for (const auto& obj : scene.objects) {
ObjectData data;
data.model = obj.get_model_matrix();
data.color = obj.color;
// data.params = ...
obj_data.push_back(data);
if (obj_data.size() >= kMaxObjects) break;
}
if (!obj_data.empty()) {
wgpuQueueWriteBuffer(queue_, object_storage_buffer_, 0, obj_data.data(), obj_data.size() * sizeof(ObjectData));
}
}
void Renderer3D::render(const Scene& scene, const Camera& camera, float time,
WGPUTextureView target_view, WGPUTextureView depth_view_opt) {
update_uniforms(scene, camera, time);
WGPUTextureView depth_view = depth_view_opt ? depth_view_opt : depth_view_;
if (!depth_view) return; // Should have been created by resize
WGPURenderPassColorAttachment color_attachment = {};
gpu_init_color_attachment(color_attachment, target_view);
color_attachment.clearValue = {0.05, 0.05, 0.1, 1.0}; // Dark blue-ish background
WGPURenderPassDepthStencilAttachment depth_attachment = {};
depth_attachment.view = depth_view;
depth_attachment.depthLoadOp = WGPULoadOp_Clear;
depth_attachment.depthStoreOp = WGPUStoreOp_Store;
depth_attachment.depthClearValue = 1.0f;
WGPURenderPassDescriptor pass_desc = {};
pass_desc.colorAttachmentCount = 1;
pass_desc.colorAttachments = &color_attachment;
pass_desc.depthStencilAttachment = &depth_attachment;
WGPUCommandEncoder encoder = wgpuDeviceCreateCommandEncoder(device_, nullptr);
WGPURenderPassEncoder pass = wgpuCommandEncoderBeginRenderPass(encoder, &pass_desc);
wgpuRenderPassEncoderSetPipeline(pass, pipeline_);
wgpuRenderPassEncoderSetBindGroup(pass, 0, bind_group_, 0, nullptr);
// Draw all objects (Instance Count = object count)
// Vertex Count = 36 (Cube)
uint32_t instance_count = (uint32_t)std::min((size_t)kMaxObjects, scene.objects.size());
if (instance_count > 0) {
wgpuRenderPassEncoderDraw(pass, 36, instance_count, 0, 0);
}
wgpuRenderPassEncoderEnd(pass);
WGPUCommandBuffer commands = wgpuCommandEncoderFinish(encoder, nullptr);
wgpuQueueSubmit(queue_, 1, &commands);
wgpuRenderPassEncoderRelease(pass);
wgpuCommandBufferRelease(commands);
wgpuCommandEncoderRelease(encoder);
}
|