// 3x3 convolution with weight indexing // Samples 9 pixels, applies mat4 weights per sample fn cnn_conv3x3( tex: texture_2d, samp: sampler, uv: vec2, resolution: vec2, weights: array, 9>, bias: vec4 ) -> vec4 { let step = 1.0 / resolution; var sum = bias; var idx = 0; for (var dy = -1; dy <= 1; dy++) { for (var dx = -1; dx <= 1; dx++) { let offset = vec2(f32(dx), f32(dy)) * step; let sample = textureSample(tex, samp, uv + offset); sum += weights[idx] * sample; idx++; } } return sum; } fn cnn_conv3x3_with_coord( tex: texture_2d, samp: sampler, uv: vec2, resolution: vec2, rgba_weights: array, 9>, coord_weights: mat2x4, bias: vec4 ) -> vec4 { let step = 1.0 / resolution; var sum = bias; sum += coord_weights * uv; var idx = 0; for (var dy = -1; dy <= 1; dy++) { for (var dx = -1; dx <= 1; dx++) { let offset = vec2(f32(dx), f32(dy)) * step; let rgba = textureSample(tex, samp, uv + offset); sum += rgba_weights[idx] * rgba; idx++; } } return sum; } // Inner layers: 7→4 channels (RGBD output) // weights: array, 36> (9 positions × 4 channels, each with 7 weights + bias) fn cnn_conv3x3_7to4( tex: texture_2d, samp: sampler, uv: vec2, resolution: vec2, original: vec4, weights: array, 36> ) -> vec4 { let step = 1.0 / resolution; // Compute grayscale from original and normalize to [-1,1] let gray_01 = 0.2126*original.r + 0.7152*original.g + 0.0722*original.b; let gray = (gray_01 - 0.5) * 2.0; // Normalize UV to [-1,1] let uv_norm = (uv - 0.5) * 2.0; var sum = vec4(0.0); var pos = 0; for (var dy = -1; dy <= 1; dy++) { for (var dx = -1; dx <= 1; dx++) { let offset = vec2(f32(dx), f32(dy)) * step; let rgbd_01 = textureSample(tex, samp, uv + offset); // Normalize RGBD to [-1,1] let rgbd = (rgbd_01 - 0.5) * 2.0; // 7-channel input: [R,G,B,D, uv.x, uv.y, gray] all in [-1,1] let inputs = array( rgbd.r, rgbd.g, rgbd.b, rgbd.a, uv_norm.x, uv_norm.y, gray ); // Accumulate for each output channel (RGBD) for (var out_c = 0; out_c < 4; out_c++) { let idx = pos * 4 + out_c; var channel_sum = weights[idx][7]; // Bias (8th element) for (var in_c = 0; in_c < 7; in_c++) { channel_sum += weights[idx][in_c] * inputs[in_c]; } sum[out_c] += channel_sum; } pos++; } } return sum; // Output in [-1,1] range } // Final layer: 7→1 channel (scalar output) // weights: array, 9> (9 positions, each with 7 weights + bias) fn cnn_conv3x3_7to1( tex: texture_2d, samp: sampler, uv: vec2, resolution: vec2, original: vec4, weights: array, 9> ) -> f32 { let step = 1.0 / resolution; // Normalize grayscale to [-1,1] let gray_01 = 0.2126*original.r + 0.7152*original.g + 0.0722*original.b; let gray = (gray_01 - 0.5) * 2.0; // Normalize UV to [-1,1] let uv_norm = (uv - 0.5) * 2.0; var sum = 0.0; var pos = 0; for (var dy = -1; dy <= 1; dy++) { for (var dx = -1; dx <= 1; dx++) { let offset = vec2(f32(dx), f32(dy)) * step; let rgbd_01 = textureSample(tex, samp, uv + offset); // Normalize RGBD to [-1,1] let rgbd = (rgbd_01 - 0.5) * 2.0; // 7-channel input all in [-1,1] sum += weights[pos][0] * rgbd.r; sum += weights[pos][1] * rgbd.g; sum += weights[pos][2] * rgbd.b; sum += weights[pos][3] * rgbd.a; sum += weights[pos][4] * uv_norm.x; sum += weights[pos][5] * uv_norm.y; sum += weights[pos][6] * gray; sum += weights[pos][7]; // Bias pos++; } } return sum; // Output in [-1,1], needs denormalization }