// Spectral Brush Editor - Main Script // Implements Bezier curve editing, spectrogram rendering, and audio playback // ============================================================================ // State Management // ============================================================================ const SAMPLE_RATE = 32000; const DCT_SIZE = 512; const state = { // Reference audio data referenceSpectrogram: null, // Float32Array or null referenceDctSize: DCT_SIZE, referenceNumFrames: 0, // Procedural curves curves: [], // Array of {id, controlPoints: [{frame, freqHz, amplitude}], profile: {type, param1, param2}} nextCurveId: 0, selectedCurveId: null, selectedControlPointIdx: null, // Canvas state canvasWidth: 0, canvasHeight: 0, pixelsPerFrame: 2.0, // Zoom level (pixels per frame) pixelsPerBin: 1.0, // Vertical scale (pixels per frequency bin) // Audio playback audioContext: null, isPlaying: false, currentSource: null, // Undo/Redo history: [], historyIndex: -1, maxHistorySize: 50 }; // ============================================================================ // Initialization // ============================================================================ document.addEventListener('DOMContentLoaded', () => { initCanvas(); initUI(); initKeyboardShortcuts(); initAudioContext(); console.log('Spectral Brush Editor initialized'); }); function initCanvas() { const canvas = document.getElementById('spectrogramCanvas'); const container = canvas.parentElement; // Set canvas size to match container const resizeCanvas = () => { canvas.width = container.clientWidth; canvas.height = container.clientHeight; state.canvasWidth = canvas.width; state.canvasHeight = canvas.height; render(); }; window.addEventListener('resize', resizeCanvas); resizeCanvas(); // Mouse event handlers canvas.addEventListener('mousedown', onCanvasMouseDown); canvas.addEventListener('mousemove', onCanvasMouseMove); canvas.addEventListener('mouseup', onCanvasMouseUp); canvas.addEventListener('contextmenu', onCanvasRightClick); } function initUI() { // File loading document.getElementById('loadWavBtn').addEventListener('click', () => { document.getElementById('fileInput').click(); }); document.getElementById('fileInput').addEventListener('change', onFileSelected); // Curve management document.getElementById('addCurveBtn').addEventListener('click', addCurve); document.getElementById('deleteCurveBtn').addEventListener('click', deleteSelectedCurve); document.getElementById('curveSelect').addEventListener('change', onCurveSelected); // Profile controls document.getElementById('profileType').addEventListener('change', onProfileChanged); document.getElementById('sigmaSlider').addEventListener('input', onSigmaChanged); document.getElementById('sigmaValue').addEventListener('input', onSigmaValueChanged); // Playback controls document.getElementById('playProceduralBtn').addEventListener('click', () => playAudio('procedural')); document.getElementById('playOriginalBtn').addEventListener('click', () => playAudio('original')); document.getElementById('stopBtn').addEventListener('click', stopAudio); // Action buttons document.getElementById('undoBtn').addEventListener('click', undo); document.getElementById('redoBtn').addEventListener('click', redo); document.getElementById('saveParamsBtn').addEventListener('click', saveProceduralParams); document.getElementById('generateCodeBtn').addEventListener('click', generateCppCode); document.getElementById('helpBtn').addEventListener('click', showHelp); // Help modal document.getElementById('closeHelpModal').addEventListener('click', hideHelp); document.getElementById('helpModal').addEventListener('click', (e) => { if (e.target.id === 'helpModal') hideHelp(); }); } function initKeyboardShortcuts() { document.addEventListener('keydown', (e) => { // Playback shortcuts if (e.key === '1') { playAudio('procedural'); return; } if (e.key === '2') { playAudio('original'); return; } if (e.key === ' ') { e.preventDefault(); stopAudio(); return; } // Edit shortcuts if (e.key === 'Delete') { deleteSelectedControlPoint(); return; } if (e.key === 'Escape') { deselectAll(); return; } // Undo/Redo if (e.ctrlKey && e.shiftKey && e.key === 'Z') { e.preventDefault(); redo(); return; } if (e.ctrlKey && e.key === 'z') { e.preventDefault(); undo(); return; } // File operations if (e.ctrlKey && e.shiftKey && e.key === 'S') { e.preventDefault(); generateCppCode(); return; } if (e.ctrlKey && e.key === 's') { e.preventDefault(); saveProceduralParams(); return; } if (e.ctrlKey && e.key === 'o') { e.preventDefault(); document.getElementById('fileInput').click(); return; } // Help if (e.key === '?') { showHelp(); return; } }); } function initAudioContext() { try { state.audioContext = new (window.AudioContext || window.webkitAudioContext)({ sampleRate: SAMPLE_RATE }); console.log('Audio context initialized:', state.audioContext.sampleRate, 'Hz'); } catch (error) { console.error('Failed to initialize audio context:', error); alert('Audio playback unavailable. Your browser may not support Web Audio API.'); } } // ============================================================================ // File Loading // ============================================================================ function onFileSelected(e) { const file = e.target.files[0]; if (!file) return; const fileName = file.name; const fileExt = fileName.split('.').pop().toLowerCase(); if (fileExt === 'wav') { loadWavFile(file); } else if (fileExt === 'spec') { loadSpecFile(file); } else { alert('Unsupported file format. Please load a .wav or .spec file.'); } } function loadWavFile(file) { const reader = new FileReader(); reader.onload = (e) => { const arrayBuffer = e.target.result; state.audioContext.decodeAudioData(arrayBuffer, (audioBuffer) => { console.log('Decoded WAV:', audioBuffer.length, 'samples,', audioBuffer.numberOfChannels, 'channels'); // Convert to spectrogram (simplified: just use first channel) const audioData = audioBuffer.getChannelData(0); const spectrogram = audioToSpectrogram(audioData); state.referenceSpectrogram = spectrogram.data; state.referenceDctSize = spectrogram.dctSize; state.referenceNumFrames = spectrogram.numFrames; onReferenceLoaded(file.name); }, (error) => { console.error('Failed to decode WAV:', error); alert('Failed to decode WAV file. Make sure it is a valid audio file.'); }); }; reader.readAsArrayBuffer(file); } function loadSpecFile(file) { const reader = new FileReader(); reader.onload = (e) => { const arrayBuffer = e.target.result; const spec = parseSpecFile(arrayBuffer); if (!spec) { alert('Failed to parse .spec file. Invalid format.'); return; } state.referenceSpectrogram = spec.data; state.referenceDctSize = spec.dctSize; state.referenceNumFrames = spec.numFrames; onReferenceLoaded(file.name); }; reader.readAsArrayBuffer(file); } function parseSpecFile(arrayBuffer) { const view = new DataView(arrayBuffer); let offset = 0; // Read header: "SPEC" magic (4 bytes) const magic = String.fromCharCode( view.getUint8(offset++), view.getUint8(offset++), view.getUint8(offset++), view.getUint8(offset++) ); if (magic !== 'SPEC') { console.error('Invalid .spec file: wrong magic', magic); return null; } // Read version (uint32) const version = view.getUint32(offset, true); offset += 4; // Read dct_size (uint32) const dctSize = view.getUint32(offset, true); offset += 4; // Read num_frames (uint32) const numFrames = view.getUint32(offset, true); offset += 4; console.log('.spec header:', {version, dctSize, numFrames}); // Read spectral data (float32 array) const dataLength = dctSize * numFrames; const data = new Float32Array(dataLength); for (let i = 0; i < dataLength; i++) { data[i] = view.getFloat32(offset, true); offset += 4; } return {dctSize, numFrames, data}; } function audioToSpectrogram(audioData) { // Simplified STFT: divide audio into frames and apply DCT // Frame overlap: 50% (hop size = DCT_SIZE / 2) const hopSize = DCT_SIZE / 2; const numFrames = Math.floor((audioData.length - DCT_SIZE) / hopSize) + 1; const spectrogram = new Float32Array(DCT_SIZE * numFrames); const window = hanningWindowArray; for (let frameIdx = 0; frameIdx < numFrames; frameIdx++) { const frameStart = frameIdx * hopSize; const frame = new Float32Array(DCT_SIZE); // Extract windowed frame for (let i = 0; i < DCT_SIZE; i++) { if (frameStart + i < audioData.length) { frame[i] = audioData[frameStart + i] * window[i]; } } // Compute DCT (forward transform) const dctCoeffs = javascript_dct_512(frame); // Store in spectrogram for (let b = 0; b < DCT_SIZE; b++) { spectrogram[frameIdx * DCT_SIZE + b] = dctCoeffs[b]; } } return {dctSize: DCT_SIZE, numFrames, data: spectrogram}; } // Forward DCT (not in dct.js, add here) function javascript_dct_512(input) { const output = new Float32Array(DCT_SIZE); const PI = Math.PI; const N = DCT_SIZE; for (let k = 0; k < N; k++) { let sum = 0; for (let n = 0; n < N; n++) { sum += input[n] * Math.cos((PI / N) * k * (n + 0.5)); } output[k] = sum * (k === 0 ? Math.sqrt(1 / N) : Math.sqrt(2 / N)); } return output; } function onReferenceLoaded(fileName) { console.log('Reference loaded:', fileName); document.getElementById('fileInfo').textContent = fileName; document.getElementById('canvasOverlay').classList.add('hidden'); document.getElementById('playOriginalBtn').disabled = false; // Adjust zoom to fit state.pixelsPerFrame = Math.max(1.0, state.canvasWidth / state.referenceNumFrames); render(); } // ============================================================================ // Curve Management // ============================================================================ function addCurve() { // Generate a unique color for this curve const colors = [ '#0e639c', // Blue '#00aa00', // Green '#cc5500', // Orange '#aa00aa', // Purple '#00aaaa', // Cyan '#aa5500', // Brown '#ff69b4', // Pink '#ffd700', // Gold ]; const color = colors[state.curves.length % colors.length]; const curve = { id: state.nextCurveId++, controlPoints: [], // Empty initially, user will place points profile: { type: 'gaussian', param1: 30.0, // sigma param2: 0.0 }, color: color }; state.curves.push(curve); state.selectedCurveId = curve.id; saveHistoryState('Add curve'); updateCurveUI(); render(); } function deleteSelectedCurve() { if (state.selectedCurveId === null) return; const idx = state.curves.findIndex(c => c.id === state.selectedCurveId); if (idx >= 0) { state.curves.splice(idx, 1); state.selectedCurveId = null; state.selectedControlPointIdx = null; saveHistoryState('Delete curve'); updateCurveUI(); render(); } } function onCurveSelected(e) { const curveId = parseInt(e.target.value); state.selectedCurveId = curveId >= 0 ? curveId : null; state.selectedControlPointIdx = null; updateCurveUI(); render(); } function updateCurveUI() { // Update curve list (toolbar) const curveList = document.getElementById('curveList'); curveList.innerHTML = ''; state.curves.forEach(curve => { const div = document.createElement('div'); div.className = 'curve-item'; if (curve.id === state.selectedCurveId) { div.classList.add('selected'); } // Add color indicator const colorDot = document.createElement('span'); colorDot.style.display = 'inline-block'; colorDot.style.width = '12px'; colorDot.style.height = '12px'; colorDot.style.borderRadius = '50%'; colorDot.style.backgroundColor = curve.color || '#0e639c'; colorDot.style.marginRight = '8px'; colorDot.style.verticalAlign = 'middle'; div.appendChild(colorDot); div.appendChild(document.createTextNode(`Curve ${curve.id} (${curve.controlPoints.length} points)`)); div.addEventListener('click', () => { state.selectedCurveId = curve.id; state.selectedControlPointIdx = null; updateCurveUI(); render(); }); curveList.appendChild(div); }); // Update curve select dropdown const curveSelect = document.getElementById('curveSelect'); curveSelect.innerHTML = ''; if (state.curves.length === 0) { const opt = document.createElement('option'); opt.value = -1; opt.textContent = 'No curves'; curveSelect.appendChild(opt); } else { state.curves.forEach(curve => { const opt = document.createElement('option'); opt.value = curve.id; opt.textContent = `Curve ${curve.id}`; opt.selected = curve.id === state.selectedCurveId; curveSelect.appendChild(opt); }); } // Update delete button state document.getElementById('deleteCurveBtn').disabled = state.selectedCurveId === null; // Update profile controls if (state.selectedCurveId !== null) { const curve = state.curves.find(c => c.id === state.selectedCurveId); if (curve) { document.getElementById('profileType').value = curve.profile.type; document.getElementById('sigmaSlider').value = curve.profile.param1; document.getElementById('sigmaValue').value = curve.profile.param1; } } } // ============================================================================ // Profile Controls // ============================================================================ function onProfileChanged(e) { if (state.selectedCurveId === null) return; const curve = state.curves.find(c => c.id === state.selectedCurveId); if (!curve) return; curve.profile.type = e.target.value; // Update label based on profile type const label = document.getElementById('sigmaLabel'); if (curve.profile.type === 'gaussian') { label.textContent = 'Sigma:'; } else if (curve.profile.type === 'decaying_sinusoid') { label.textContent = 'Decay:'; } else if (curve.profile.type === 'noise') { label.textContent = 'Amplitude:'; } saveHistoryState('Change profile'); render(); } function onSigmaChanged(e) { if (state.selectedCurveId === null) return; const curve = state.curves.find(c => c.id === state.selectedCurveId); if (!curve) return; curve.profile.param1 = parseFloat(e.target.value); document.getElementById('sigmaValue').value = curve.profile.param1; render(); } function onSigmaValueChanged(e) { if (state.selectedCurveId === null) return; const curve = state.curves.find(c => c.id === state.selectedCurveId); if (!curve) return; curve.profile.param1 = parseFloat(e.target.value); document.getElementById('sigmaSlider').value = curve.profile.param1; render(); } // ============================================================================ // Canvas Interaction // ============================================================================ let isDragging = false; let dragStartX = 0; let dragStartY = 0; function onCanvasMouseDown(e) { const rect = e.target.getBoundingClientRect(); const x = e.clientX - rect.left; const y = e.clientY - rect.top; // Check if clicking on existing control point const clickedPoint = findControlPointAt(x, y); if (clickedPoint) { // Start dragging existing point state.selectedCurveId = clickedPoint.curveId; state.selectedControlPointIdx = clickedPoint.pointIdx; isDragging = true; dragStartX = x; dragStartY = y; updateCurveUI(); render(); } else if (state.selectedCurveId !== null) { // Place new control point const curve = state.curves.find(c => c.id === state.selectedCurveId); if (curve) { const point = screenToSpectrogram(x, y); curve.controlPoints.push(point); // Sort by frame curve.controlPoints.sort((a, b) => a.frame - b.frame); saveHistoryState('Add control point'); updateCurveUI(); render(); } } } function onCanvasMouseMove(e) { if (!isDragging) return; if (state.selectedCurveId === null || state.selectedControlPointIdx === null) return; const rect = e.target.getBoundingClientRect(); const x = e.clientX - rect.left; const y = e.clientY - rect.top; const curve = state.curves.find(c => c.id === state.selectedCurveId); if (!curve) return; const point = curve.controlPoints[state.selectedControlPointIdx]; if (!point) return; // Update point position const newPoint = screenToSpectrogram(x, y); point.frame = newPoint.frame; point.freqHz = newPoint.freqHz; point.amplitude = newPoint.amplitude; // Re-sort by frame curve.controlPoints.sort((a, b) => a.frame - b.frame); render(); } function onCanvasMouseUp(e) { if (isDragging) { isDragging = false; saveHistoryState('Move control point'); } } function onCanvasRightClick(e) { e.preventDefault(); const rect = e.target.getBoundingClientRect(); const x = e.clientX - rect.left; const y = e.clientY - rect.top; const clickedPoint = findControlPointAt(x, y); if (clickedPoint) { const curve = state.curves.find(c => c.id === clickedPoint.curveId); if (curve) { curve.controlPoints.splice(clickedPoint.pointIdx, 1); state.selectedControlPointIdx = null; saveHistoryState('Delete control point'); updateCurveUI(); render(); } } } function findControlPointAt(screenX, screenY) { const CLICK_RADIUS = 8; // pixels for (const curve of state.curves) { for (let i = 0; i < curve.controlPoints.length; i++) { const point = curve.controlPoints[i]; const screenPos = spectrogramToScreen(point.frame, point.freqHz); const dx = screenX - screenPos.x; const dy = screenY - screenPos.y; const dist = Math.sqrt(dx * dx + dy * dy); if (dist <= CLICK_RADIUS) { return {curveId: curve.id, pointIdx: i}; } } } return null; } function deleteSelectedControlPoint() { if (state.selectedCurveId === null || state.selectedControlPointIdx === null) return; const curve = state.curves.find(c => c.id === state.selectedCurveId); if (curve && state.selectedControlPointIdx < curve.controlPoints.length) { curve.controlPoints.splice(state.selectedControlPointIdx, 1); state.selectedControlPointIdx = null; saveHistoryState('Delete control point'); updateCurveUI(); render(); } } function deselectAll() { state.selectedCurveId = null; state.selectedControlPointIdx = null; updateCurveUI(); render(); } // ============================================================================ // Coordinate Conversion // ============================================================================ function screenToSpectrogram(screenX, screenY) { const frame = Math.round(screenX / state.pixelsPerFrame); const bin = Math.round((state.canvasHeight - screenY) / state.pixelsPerBin); const freqHz = (bin / state.referenceDctSize) * (SAMPLE_RATE / 2); // Amplitude from Y position (normalized 0-1, top = 1.0, bottom = 0.0) const amplitude = 1.0 - (screenY / state.canvasHeight); return { frame: Math.max(0, frame), freqHz: Math.max(0, freqHz), amplitude: Math.max(0, Math.min(1, amplitude)) }; } function spectrogramToScreen(frame, freqHz) { const bin = (freqHz / (SAMPLE_RATE / 2)) * state.referenceDctSize; const x = frame * state.pixelsPerFrame; const y = state.canvasHeight - (bin * state.pixelsPerBin); return {x, y}; } // ============================================================================ // Rendering (continued in next message due to length) // ============================================================================ // ============================================================================ // Rendering // ============================================================================ function render() { const canvas = document.getElementById('spectrogramCanvas'); const ctx = canvas.getContext('2d'); // Clear canvas ctx.fillStyle = '#1e1e1e'; ctx.fillRect(0, 0, canvas.width, canvas.height); // Draw reference spectrogram (background) if (state.referenceSpectrogram) { drawReferenceSpectrogram(ctx); } // Draw procedural spectrogram (foreground) if (state.curves.length > 0) { drawProceduralSpectrogram(ctx); } // Draw control points drawControlPoints(ctx); } function drawReferenceSpectrogram(ctx) { // Draw semi-transparent reference ctx.globalAlpha = 0.3; const imgData = ctx.createImageData(state.canvasWidth, state.canvasHeight); for (let frameIdx = 0; frameIdx < state.referenceNumFrames; frameIdx++) { const x = Math.floor(frameIdx * state.pixelsPerFrame); if (x >= state.canvasWidth) break; for (let bin = 0; bin < state.referenceDctSize; bin++) { const y = state.canvasHeight - Math.floor(bin * state.pixelsPerBin); if (y < 0 || y >= state.canvasHeight) continue; const specValue = state.referenceSpectrogram[frameIdx * state.referenceDctSize + bin]; const intensity = Math.min(255, Math.abs(specValue) * 50); // Scale for visibility const pixelIdx = (y * state.canvasWidth + x) * 4; imgData.data[pixelIdx + 0] = intensity; // R imgData.data[pixelIdx + 1] = intensity; // G imgData.data[pixelIdx + 2] = intensity; // B imgData.data[pixelIdx + 3] = 255; // A } } ctx.putImageData(imgData, 0, 0); ctx.globalAlpha = 1.0; } function drawProceduralSpectrogram(ctx) { // Draw each curve separately with its own color const numFrames = state.referenceNumFrames || 100; ctx.globalAlpha = 0.6; state.curves.forEach(curve => { if (curve.controlPoints.length === 0) return; // Generate spectrogram for this curve only const curveSpec = new Float32Array(state.referenceDctSize * numFrames); drawCurveToSpectrogram(curve, curveSpec, state.referenceDctSize, numFrames); // Parse curve color (hex to RGB) const color = hexToRgb(curve.color || '#0e639c'); const imgData = ctx.createImageData(state.canvasWidth, state.canvasHeight); for (let frameIdx = 0; frameIdx < numFrames; frameIdx++) { const x = Math.floor(frameIdx * state.pixelsPerFrame); if (x >= state.canvasWidth) break; for (let bin = 0; bin < state.referenceDctSize; bin++) { const y = state.canvasHeight - Math.floor(bin * state.pixelsPerBin); if (y < 0 || y >= state.canvasHeight) continue; const specValue = curveSpec[frameIdx * state.referenceDctSize + bin]; const intensity = Math.min(1.0, Math.abs(specValue) / 10.0); // Normalize to 0-1 if (intensity > 0.01) { // Only draw visible pixels const pixelIdx = (y * state.canvasWidth + x) * 4; imgData.data[pixelIdx + 0] = Math.floor(color.r * intensity); imgData.data[pixelIdx + 1] = Math.floor(color.g * intensity); imgData.data[pixelIdx + 2] = Math.floor(color.b * intensity); imgData.data[pixelIdx + 3] = 255; } } } ctx.putImageData(imgData, 0, 0); }); ctx.globalAlpha = 1.0; } // Helper: Convert hex color to RGB function hexToRgb(hex) { const result = /^#?([a-f\d]{2})([a-f\d]{2})([a-f\d]{2})$/i.exec(hex); return result ? { r: parseInt(result[1], 16), g: parseInt(result[2], 16), b: parseInt(result[3], 16) } : {r: 14, g: 99, b: 156}; // Default blue } function drawControlPoints(ctx) { state.curves.forEach(curve => { const isSelected = curve.id === state.selectedCurveId; const curveColor = curve.color || '#0e639c'; // Draw Bezier curve path if (curve.controlPoints.length >= 2) { ctx.strokeStyle = isSelected ? curveColor : '#666666'; ctx.lineWidth = isSelected ? 3 : 2; ctx.beginPath(); for (let i = 0; i < curve.controlPoints.length; i++) { const point = curve.controlPoints[i]; const screenPos = spectrogramToScreen(point.frame, point.freqHz); if (i === 0) { ctx.moveTo(screenPos.x, screenPos.y); } else { ctx.lineTo(screenPos.x, screenPos.y); } } ctx.stroke(); } // Draw control points curve.controlPoints.forEach((point, idx) => { const screenPos = spectrogramToScreen(point.frame, point.freqHz); const isPointSelected = isSelected && idx === state.selectedControlPointIdx; ctx.fillStyle = isPointSelected ? '#ffaa00' : (isSelected ? curveColor : '#888888'); ctx.beginPath(); ctx.arc(screenPos.x, screenPos.y, 6, 0, 2 * Math.PI); ctx.fill(); ctx.strokeStyle = '#ffffff'; ctx.lineWidth = 2; ctx.stroke(); // Draw label if (isSelected) { ctx.fillStyle = '#ffffff'; ctx.font = '11px monospace'; ctx.fillText(`${Math.round(point.freqHz)}Hz`, screenPos.x + 10, screenPos.y - 5); } }); }); } // ============================================================================ // Procedural Spectrogram Generation // ============================================================================ function generateProceduralSpectrogram(numFrames) { const spectrogram = new Float32Array(state.referenceDctSize * numFrames); // For each curve, draw its contribution state.curves.forEach(curve => { drawCurveToSpectrogram(curve, spectrogram, state.referenceDctSize, numFrames); }); return spectrogram; } function drawCurveToSpectrogram(curve, spectrogram, dctSize, numFrames) { if (curve.controlPoints.length === 0) return; // Amplitude scaling factor to match typical DCT coefficient magnitudes const AMPLITUDE_SCALE = 10.0; for (let frame = 0; frame < numFrames; frame++) { // Evaluate Bezier curve at this frame const freqHz = evaluateBezierLinear(curve.controlPoints, frame, 'freqHz'); const amplitude = evaluateBezierLinear(curve.controlPoints, frame, 'amplitude'); // Convert freq to bin const freqBin0 = (freqHz / (SAMPLE_RATE / 2)) * dctSize; // Apply vertical profile for (let bin = 0; bin < dctSize; bin++) { const dist = Math.abs(bin - freqBin0); const profileValue = evaluateProfile(curve.profile, dist); const idx = frame * dctSize + bin; spectrogram[idx] += amplitude * profileValue * AMPLITUDE_SCALE; } } } function evaluateBezierLinear(controlPoints, frame, property) { if (controlPoints.length === 0) return 0; if (controlPoints.length === 1) return controlPoints[0][property]; const frames = controlPoints.map(p => p.frame); const values = controlPoints.map(p => p[property]); // Clamp to range if (frame <= frames[0]) return values[0]; if (frame >= frames[frames.length - 1]) return values[values.length - 1]; // Find segment for (let i = 0; i < frames.length - 1; i++) { if (frame >= frames[i] && frame <= frames[i + 1]) { const t = (frame - frames[i]) / (frames[i + 1] - frames[i]); return values[i] * (1 - t) + values[i + 1] * t; } } return values[values.length - 1]; } function evaluateProfile(profile, distance) { switch (profile.type) { case 'gaussian': { const sigma = profile.param1; return Math.exp(-(distance * distance) / (sigma * sigma)); } case 'decaying_sinusoid': { const decay = profile.param1; const omega = profile.param2 || 0.5; return Math.exp(-decay * distance) * Math.cos(omega * distance); } case 'noise': { const amplitude = profile.param1; const seed = profile.param2 || 42; // Simple deterministic noise const hash = (seed + Math.floor(distance * 1000)) % 10000; return amplitude * (hash / 10000); } default: return 0; } } // ============================================================================ // Audio Playback // ============================================================================ function playAudio(source) { if (!state.audioContext) { alert('Audio context not available'); return; } stopAudio(); let spectrogram; let numFrames; if (source === 'original') { if (!state.referenceSpectrogram) { alert('No reference audio loaded'); return; } spectrogram = state.referenceSpectrogram; numFrames = state.referenceNumFrames; } else { // procedural if (state.curves.length === 0) { alert('No curves defined. Add a curve first.'); return; } numFrames = state.referenceNumFrames || 100; spectrogram = generateProceduralSpectrogram(numFrames); } // Convert spectrogram to audio via IDCT const audioData = spectrogramToAudio(spectrogram, state.referenceDctSize, numFrames); // Create audio buffer const audioBuffer = state.audioContext.createBuffer(1, audioData.length, SAMPLE_RATE); audioBuffer.getChannelData(0).set(audioData); // Play const bufferSource = state.audioContext.createBufferSource(); bufferSource.buffer = audioBuffer; bufferSource.connect(state.audioContext.destination); bufferSource.start(); state.currentSource = bufferSource; state.isPlaying = true; bufferSource.onended = () => { state.isPlaying = false; state.currentSource = null; }; console.log('Playing audio:', audioData.length, 'samples'); } function stopAudio() { if (state.currentSource) { state.currentSource.stop(); state.currentSource = null; } state.isPlaying = false; } function spectrogramToAudio(spectrogram, dctSize, numFrames) { const hopSize = dctSize / 2; const audioLength = numFrames * hopSize + dctSize; const audioData = new Float32Array(audioLength); const window = hanningWindowArray; for (let frameIdx = 0; frameIdx < numFrames; frameIdx++) { // Extract frame const frame = new Float32Array(dctSize); for (let b = 0; b < dctSize; b++) { frame[b] = spectrogram[frameIdx * dctSize + b]; } // IDCT const timeFrame = javascript_idct_512(frame); // Apply window and overlap-add const frameStart = frameIdx * hopSize; for (let i = 0; i < dctSize; i++) { if (frameStart + i < audioLength) { audioData[frameStart + i] += timeFrame[i] * window[i]; } } } return audioData; } // ============================================================================ // Undo/Redo // ============================================================================ function saveHistoryState(action) { // Remove any states after current index state.history = state.history.slice(0, state.historyIndex + 1); // Save current state const snapshot = { action, curves: JSON.parse(JSON.stringify(state.curves)), selectedCurveId: state.selectedCurveId }; state.history.push(snapshot); // Limit history size if (state.history.length > state.maxHistorySize) { state.history.shift(); } else { state.historyIndex++; } updateUndoRedoButtons(); } function undo() { if (state.historyIndex <= 0) return; state.historyIndex--; const snapshot = state.history[state.historyIndex]; state.curves = JSON.parse(JSON.stringify(snapshot.curves)); state.selectedCurveId = snapshot.selectedCurveId; state.selectedControlPointIdx = null; updateCurveUI(); updateUndoRedoButtons(); render(); console.log('Undo:', snapshot.action); } function redo() { if (state.historyIndex >= state.history.length - 1) return; state.historyIndex++; const snapshot = state.history[state.historyIndex]; state.curves = JSON.parse(JSON.stringify(snapshot.curves)); state.selectedCurveId = snapshot.selectedCurveId; state.selectedControlPointIdx = null; updateCurveUI(); updateUndoRedoButtons(); render(); console.log('Redo:', snapshot.action); } function updateUndoRedoButtons() { document.getElementById('undoBtn').disabled = state.historyIndex <= 0; document.getElementById('redoBtn').disabled = state.historyIndex >= state.history.length - 1; } // ============================================================================ // File Export // ============================================================================ function saveProceduralParams() { if (state.curves.length === 0) { alert('No curves to save. Add at least one curve first.'); return; } const text = generateProceduralParamsText(); downloadTextFile('procedural_params.txt', text); } function generateProceduralParamsText() { let text = '# Spectral Brush Procedural Parameters\n'; text += `METADATA dct_size=${state.referenceDctSize} num_frames=${state.referenceNumFrames || 100} sample_rate=${SAMPLE_RATE}\n\n`; state.curves.forEach((curve, idx) => { text += `CURVE bezier\n`; curve.controlPoints.forEach(point => { text += ` CONTROL_POINT ${point.frame} ${point.freqHz.toFixed(1)} ${point.amplitude.toFixed(3)}\n`; }); text += ` PROFILE ${curve.profile.type}`; if (curve.profile.type === 'gaussian') { text += ` sigma=${curve.profile.param1.toFixed(1)}`; } else if (curve.profile.type === 'decaying_sinusoid') { text += ` decay=${curve.profile.param1.toFixed(2)} frequency=${curve.profile.param2.toFixed(2)}`; } else if (curve.profile.type === 'noise') { text += ` amplitude=${curve.profile.param1.toFixed(2)} seed=${curve.profile.param2.toFixed(0)}`; } text += '\n'; text += 'END_CURVE\n\n'; }); return text; } function generateCppCode() { if (state.curves.length === 0) { alert('No curves to export. Add at least one curve first.'); return; } const code = generateCppCodeText(); downloadTextFile('gen_procedural.cc', code); } function generateCppCodeText() { let code = '// Generated by Spectral Brush Editor\n'; code += '// This code reproduces the procedural audio procedurally at runtime\n\n'; code += '#include "audio/spectral_brush.h"\n\n'; code += 'void gen_procedural(float* spec, int dct_size, int num_frames) {\n'; state.curves.forEach((curve, curveIdx) => { code += ` // Curve ${curveIdx}\n`; code += ' {\n'; // Control points arrays const numPoints = curve.controlPoints.length; code += ` const float frames[] = {`; code += curve.controlPoints.map(p => `${p.frame}.0f`).join(', '); code += '};\n'; code += ` const float freqs[] = {`; code += curve.controlPoints.map(p => `${p.freqHz.toFixed(1)}f`).join(', '); code += '};\n'; code += ` const float amps[] = {`; code += curve.controlPoints.map(p => `${p.amplitude.toFixed(3)}f`).join(', '); code += '};\n\n'; // Profile type let profileEnum; if (curve.profile.type === 'gaussian') { profileEnum = 'PROFILE_GAUSSIAN'; } else if (curve.profile.type === 'decaying_sinusoid') { profileEnum = 'PROFILE_DECAYING_SINUSOID'; } else if (curve.profile.type === 'noise') { profileEnum = 'PROFILE_NOISE'; } // Function call if (curveIdx === 0) { code += ` draw_bezier_curve(spec, dct_size, num_frames,\n`; } else { code += ` draw_bezier_curve_add(spec, dct_size, num_frames,\n`; } code += ` frames, freqs, amps, ${numPoints},\n`; code += ` ${profileEnum}, ${curve.profile.param1.toFixed(2)}f`; if (curve.profile.type === 'decaying_sinusoid' || curve.profile.type === 'noise') { code += `, ${curve.profile.param2.toFixed(2)}f`; } code += ');\n'; code += ' }\n\n'; }); code += '}\n\n'; code += '// Usage in demo_assets.txt:\n'; code += '// SOUND_PROC, PROC(gen_procedural), NONE, "Procedural sound"\n'; return code; } function downloadTextFile(filename, text) { const blob = new Blob([text], {type: 'text/plain'}); const url = URL.createObjectURL(blob); const a = document.createElement('a'); a.href = url; a.download = filename; document.body.appendChild(a); a.click(); document.body.removeChild(a); URL.revokeObjectURL(url); console.log('Downloaded:', filename); } // ============================================================================ // Help Modal // ============================================================================ function showHelp() { document.getElementById('helpModal').style.display = 'flex'; } function hideHelp() { document.getElementById('helpModal').style.display = 'none'; }