// MQ Synthesizer // Replica oscillator bank for sinusoidal synthesis, plus two-pole resonator mode // Evaluate cubic bezier curve at time t function evalBezier(curve, t) { const dt = curve.t3 - curve.t0; if (dt <= 0) return curve.v0; let u = (t - curve.t0) / dt; u = Math.max(0, Math.min(1, u)); const u1 = 1.0 - u; return u1*u1*u1 * curve.v0 + 3*u1*u1*u * curve.v1 + 3*u1*u*u * curve.v2 + u*u*u * curve.v3; } // Deterministic LCG PRNG function randFloat(seed, min, max) { seed = (1664525 * seed + 1013904223) % 0x100000000; return min + (seed / 0x100000000) * (max - min); } // Synthesize audio from MQ partials // partials: array of {freqCurve, ampCurve, replicas?, resonator?} // replicas: {offsets, decay_alpha, jitter, spread_above, spread_below} // resonator: {enabled, r, gainComp} — two-pole resonator mode per partial // integratePhase: true = accumulate 2π*f/SR per sample (correct for varying freq) // false = 2π*f*t (simpler, only correct for constant freq) // options.k1: LP coefficient in (0,1] — omit to bypass // options.k2: HP coefficient in (0,1] — omit to bypass function synthesizeMQ(partials, sampleRate, duration, integratePhase = true, options = {}) { const numSamples = Math.floor(sampleRate * duration); const pcm = new Float32Array(numSamples); const jitterMult = options.disableJitter ? 0 : 1; const spreadMult = options.disableSpread ? 0 : 1; const defaultReplicas = { offsets: [1.0], decay_alpha: 0.1, jitter: 0.05, spread_above: 0.02, spread_below: 0.02 }; // Pre-build per-partial configs with fixed spread/jitter and phase accumulators const configs = []; for (let p = 0; p < partials.length; ++p) { const partial = partials[p]; const fc = partial.freqCurve; const ac = partial.ampCurve; if ((partial.resonator && partial.resonator.enabled) || options.forceResonator) { // --- Two-pole resonator mode --- // Driven by band-limited noise scaled by amp curve. // r controls pole radius (bandwidth): r→1 = narrow, r→0 = wide. // gainNorm = sqrt(1 - r²) normalises steady-state output power to ~A. const res = partial.resonator || {}; const r = options.forceRGain ? Math.min(0.9999, Math.max(0, options.globalR)) : (res.r != null ? Math.min(0.9999, Math.max(0, res.r)) : 0.995); const gainComp = options.forceRGain ? options.globalGain : (res.gainComp != null ? res.gainComp : 1.0); const gainNorm = Math.sqrt(Math.max(0, 1.0 - r * r)); configs.push({ mode: 'resonator', fc, ac, r, gainComp, gainNorm, y1: 0.0, y2: 0.0, noiseSeed: ((p * 1664525 + 1013904223) & 0xFFFFFFFF) >>> 0 }); } else { // --- Sinusoidal (replica) mode --- const rep = partial.replicas != null ? partial.replicas : defaultReplicas; const offsets = rep.offsets != null ? rep.offsets : [1.0]; const decay_alpha = rep.decay_alpha != null ? rep.decay_alpha : 0.0; const jitter = rep.jitter != null ? rep.jitter : 0.0; const spread_above = rep.spread_above != null ? rep.spread_above : 0.0; const spread_below = rep.spread_below != null ? rep.spread_below : 0.0; const replicaData = []; for (let r = 0; r < offsets.length; ++r) { const spread = spreadMult * randFloat(p * 67890 + r * 999, -spread_below, spread_above); const initPhase = randFloat(p * 67890 + r, 0.0, 1.0) * (jitter * jitterMult) * 2.0 * Math.PI; replicaData.push({ratio: offsets[r], spread, phase: initPhase}); } configs.push({ mode: 'sinusoid', fc, ac, decay_alpha, replicaData }); } } for (let i = 0; i < numSamples; ++i) { const t = i / sampleRate; let sample = 0.0; for (let p = 0; p < configs.length; ++p) { const cfg = configs[p]; const {fc, ac} = cfg; if (cfg.mode === 'resonator') { if (t < fc.t0 || t > fc.t3) { cfg.y1 = 0.0; cfg.y2 = 0.0; continue; } const f0 = evalBezier(fc, t); const A = evalBezier(ac, t); const omega = 2.0 * Math.PI * f0 / sampleRate; const b1 = 2.0 * cfg.r * Math.cos(omega); // LCG noise excitation (deterministic per-partial) cfg.noiseSeed = (Math.imul(1664525, cfg.noiseSeed) + 1013904223) >>> 0; const noise = cfg.noiseSeed / 0x100000000 * 2.0 - 1.0; const x = A * cfg.gainNorm * noise; const y = b1 * cfg.y1 - cfg.r * cfg.r * cfg.y2 + x; cfg.y2 = cfg.y1; cfg.y1 = y; sample += y * cfg.gainComp; } else { if (t < fc.t0 || t > fc.t3) continue; const f0 = evalBezier(fc, t); const A0 = evalBezier(ac, t); const {decay_alpha, replicaData} = cfg; for (let r = 0; r < replicaData.length; ++r) { const rep = replicaData[r]; const f = f0 * rep.ratio * (1.0 + rep.spread); const A = A0 * Math.exp(-decay_alpha * Math.abs(f - f0)); let phase; if (integratePhase) { rep.phase += 2.0 * Math.PI * f / sampleRate; phase = rep.phase; } else { phase = 2.0 * Math.PI * f * t + rep.phase; } sample += A * Math.sin(phase); } } } pcm[i] = sample; } // Post-synthesis filters (applied before normalization) // LP: y[n] = k1*x[n] + (1-k1)*y[n-1] — options.k1 in (0,1], omit to bypass // HP: y[n] = k2*(y[n-1] + x[n] - x[n-1]) — options.k2 in (0,1], omit to bypass if (options.k1 != null) { const k1 = Math.max(0, Math.min(1, options.k1)); let y = 0.0; for (let i = 0; i < numSamples; ++i) { y = k1 * pcm[i] + (1.0 - k1) * y; pcm[i] = y; } } if (options.k2 != null) { const k2 = Math.max(0, Math.min(1, options.k2)); let y = 0.0, xp = 0.0; for (let i = 0; i < numSamples; ++i) { const x = pcm[i]; y = k2 * (y + x - xp); xp = x; pcm[i] = y; } } // Normalize let maxAbs = 0; for (let i = 0; i < numSamples; ++i) maxAbs = Math.max(maxAbs, Math.abs(pcm[i])); if (maxAbs > 1.0) { for (let i = 0; i < numSamples; ++i) pcm[i] /= maxAbs; } return pcm; }