// --- Signed Distance Functions (SDFs) --- // Generic 2D vector operations function vec2(x, y) { return { x: x, y: y }; } function length(v) { return Math.sqrt(v.x * v.x + v.y * v.y); } function dot(v1, v2) { return v1.x * v2.x + v1.y * v2.y; } function sub(v1, v2) { return vec2(v1.x - v2.x, v1.y - v2.y); } function mul(v, s) { return vec2(v.x * s, v.y * s); } function div(v, s) { return vec2(v.x / s, v.y / s); } function normalize(v) { return div(v, length(v)); } function clamp(x, minVal, maxVal) { return Math.max(minVal, Math.min(x, maxVal)); } function abs(v) { return vec2(Math.abs(v.x), Math.abs(v.y)); } function max(v1, v2) { return vec2(Math.max(v1.x, v2.x), Math.max(v1.y, v2.y)); } function sign(x) { return (x > 0) ? 1 : ((x < 0) ? -1 : 0); } // sdSegment(p, a, b) - signed distance to a line segment // p: point, a: segment start, b: segment end function sdSegment(p, a, b) { const pa = sub(p, a); const ba = sub(b, a); const h = clamp(dot(pa, ba) / dot(ba, ba), 0.0, 1.0); return length(sub(pa, mul(ba, h))); } // sdEllipse(p, r) - signed distance to an ellipse (p relative to center, r is half-extents) // p: point relative to ellipse center, r: half-extents (rx, ry) function sdEllipse(p, r) { const k0 = vec2(1, length(div(p, r))); const k1 = vec2(length(div(p, r)), 1); const f = ((dot(div(mul(p, p), k0), vec2(1, 1)) < dot(div(mul(p, p), k1), vec2(1, 1))) ? k0 : k1); return length(sub(p, mul(r, normalize(mul(f, p))))) * sign(length(p) - r.x); // Simplified, original has length(p)-r.x which is only for circular } // sdBox(p, r) - signed distance to a rectangle (p relative to center, r is half-extents) // p: point relative to box center, r: half-extents (hx, hy) function sdBox(p, r) { const q = sub(abs(p), r); return length(max(q, vec2(0, 0))) + Math.min(0.0, Math.max(q.x, q.y)); }