// This file is part of the 64k demo project. // It implements the multi-voice additive synthesis engine. // Supports real-time spectrogram updates and peak detection. #include "synth.h" #include "audio/dct.h" #include "audio/window.h" #include "util/debug.h" #include #include #include // For printf #include // For memset #if defined(DEBUG_LOG_SYNTH) #include "audio/audio.h" #include "audio/audio_backend.h" #endif /* defined(DEBUG_LOG_SYNTH) */ struct Voice { bool active; int spectrogram_id; float volume; float pan_left; float pan_right; int current_spectral_frame; int total_spectral_frames; float time_domain_buffer[DCT_SIZE]; int buffer_pos; float fractional_pos; // Fractional sample position for tempo scaling const volatile float* active_spectral_data; }; static struct { Spectrogram spectrograms[MAX_SPECTROGRAMS]; const volatile float* active_spectrogram_data[MAX_SPECTROGRAMS]; bool spectrogram_registered[MAX_SPECTROGRAMS]; } g_synth_data; static Voice g_voices[MAX_VOICES]; static volatile float g_current_output_peak = 0.0f; // Global peak for visualization static float g_hamming_window[WINDOW_SIZE]; // Static window for optimization static float g_tempo_scale = 1.0f; // Playback speed multiplier #if defined(DEBUG_LOG_SYNTH) static float g_elapsed_time_sec = 0.0f; // Tracks elapsed time for event hooks #endif /* defined(DEBUG_LOG_SYNTH) */ void synth_init() { memset(&g_synth_data, 0, sizeof(g_synth_data)); memset(g_voices, 0, sizeof(g_voices)); g_current_output_peak = 0.0f; #if defined(DEBUG_LOG_SYNTH) g_elapsed_time_sec = 0.0f; #endif /* defined(DEBUG_LOG_SYNTH) */ // Initialize the Hamming window once hamming_window_512(g_hamming_window); } void synth_shutdown() { // Nothing to do here since we are not allocating memory } void synth_set_tempo_scale(float tempo_scale) { g_tempo_scale = tempo_scale; } int synth_register_spectrogram(const Spectrogram* spec) { #if defined(DEBUG_LOG_SYNTH) // VALIDATION: Check spectrogram pointer and data if (spec == nullptr) { DEBUG_SYNTH( "[SYNTH ERROR] Null spectrogram pointer\n"); return -1; } if (spec->spectral_data_a == nullptr || spec->spectral_data_b == nullptr) { DEBUG_SYNTH( "[SYNTH ERROR] Null spectral data pointers\n"); return -1; } if (spec->num_frames <= 0 || spec->num_frames > 10000) { DEBUG_SYNTH( "[SYNTH ERROR] Invalid num_frames=%d (must be 1-10000)\n", spec->num_frames); return -1; } // VALIDATION: Check spectral data isn't all zeros (common corruption symptom) bool all_zero = true; const float* data = spec->spectral_data_a; const int samples_to_check = (spec->num_frames > 10) ? 10 * DCT_SIZE : spec->num_frames * DCT_SIZE; for (int j = 0; j < samples_to_check; ++j) { if (data[j] != 0.0f) { all_zero = false; break; } } if (all_zero) { DEBUG_SYNTH( "[SYNTH WARNING] Spectrogram appears to be all zeros (num_frames=%d)\n", spec->num_frames); } #endif for (int i = 0; i < MAX_SPECTROGRAMS; ++i) { if (!g_synth_data.spectrogram_registered[i]) { g_synth_data.spectrograms[i] = *spec; g_synth_data.active_spectrogram_data[i] = spec->spectral_data_a; g_synth_data.spectrogram_registered[i] = true; return i; } } return -1; // No free slots } void synth_unregister_spectrogram(int spectrogram_id) { if (spectrogram_id >= 0 && spectrogram_id < MAX_SPECTROGRAMS) { g_synth_data.spectrogram_registered[spectrogram_id] = false; } } float* synth_begin_update(int spectrogram_id) { if (spectrogram_id < 0 || spectrogram_id >= MAX_SPECTROGRAMS || !g_synth_data.spectrogram_registered[spectrogram_id]) { return nullptr; } const volatile float* active_ptr = g_synth_data.active_spectrogram_data[spectrogram_id]; if (active_ptr == g_synth_data.spectrograms[spectrogram_id].spectral_data_a) { return (float*)(g_synth_data.spectrograms[spectrogram_id].spectral_data_b); } else { return (float*)(g_synth_data.spectrograms[spectrogram_id].spectral_data_a); } } void synth_commit_update(int spectrogram_id) { if (spectrogram_id < 0 || spectrogram_id >= MAX_SPECTROGRAMS || !g_synth_data.spectrogram_registered[spectrogram_id]) { return; } const volatile float* old_active_ptr = g_synth_data.active_spectrogram_data[spectrogram_id]; const float* new_active_ptr = (old_active_ptr == g_synth_data.spectrograms[spectrogram_id].spectral_data_a) ? g_synth_data.spectrograms[spectrogram_id].spectral_data_b : g_synth_data.spectrograms[spectrogram_id].spectral_data_a; // Atomic swap using GCC/Clang builtins for thread safety __atomic_store_n( (const float**)&g_synth_data.active_spectrogram_data[spectrogram_id], new_active_ptr, __ATOMIC_RELEASE); } void synth_trigger_voice(int spectrogram_id, float volume, float pan) { if (spectrogram_id < 0 || spectrogram_id >= MAX_SPECTROGRAMS || !g_synth_data.spectrogram_registered[spectrogram_id]) { #if defined(DEBUG_LOG_SYNTH) DEBUG_SYNTH( "[SYNTH ERROR] Invalid spectrogram_id=%d in trigger_voice\n", spectrogram_id); #endif return; } #if defined(DEBUG_LOG_SYNTH) // VALIDATION: Check volume and pan ranges if (volume < 0.0f || volume > 2.0f) { DEBUG_SYNTH( "[SYNTH WARNING] Unusual volume=%.2f for spectrogram_id=%d\n", volume, spectrogram_id); } if (pan < -1.0f || pan > 1.0f) { DEBUG_SYNTH( "[SYNTH WARNING] Invalid pan=%.2f (clamping) for spectrogram_id=%d\n", pan, spectrogram_id); pan = (pan < -1.0f) ? -1.0f : 1.0f; } #endif for (int i = 0; i < MAX_VOICES; ++i) { if (!g_voices[i].active) { Voice& v = g_voices[i]; v.active = true; v.spectrogram_id = spectrogram_id; v.volume = volume; // Simple linear panning v.pan_left = (pan > 0.0f) ? (1.0f - pan) : 1.0f; v.pan_right = (pan < 0.0f) ? (1.0f + pan) : 1.0f; v.current_spectral_frame = 0; v.total_spectral_frames = g_synth_data.spectrograms[spectrogram_id].num_frames; v.buffer_pos = DCT_SIZE; // Force IDCT on first render v.fractional_pos = 0.0f; // Initialize fractional position for tempo scaling v.active_spectral_data = g_synth_data.active_spectrogram_data[spectrogram_id]; #if defined(DEBUG_LOG_SYNTH) // Notify backend of voice trigger event (for testing/tracking) AudioBackend* backend = audio_get_backend(); if (backend != nullptr) { backend->on_voice_triggered(g_elapsed_time_sec, spectrogram_id, volume, pan); } #endif /* defined(DEBUG_LOG_SYNTH) */ return; // Voice triggered } } } void synth_render(float* output_buffer, int num_frames) { // Use the pre-calculated window // float window[WINDOW_SIZE]; // hamming_window_512(window); // Faster decay for more responsive visuals g_current_output_peak *= 0.90f; for (int i = 0; i < num_frames; ++i) { float left_sample = 0.0f; float right_sample = 0.0f; for (int v_idx = 0; v_idx < MAX_VOICES; ++v_idx) { Voice& v = g_voices[v_idx]; if (!v.active) continue; if (v.buffer_pos >= DCT_SIZE) { if (v.current_spectral_frame >= v.total_spectral_frames) { v.active = false; continue; } // Fetch the latest active spectrogram pointer for this voice v.active_spectral_data = g_synth_data.active_spectrogram_data[v.spectrogram_id]; const float* spectral_frame = (const float*)v.active_spectral_data + (v.current_spectral_frame * DCT_SIZE); float windowed_frame[DCT_SIZE]; for (int j = 0; j < DCT_SIZE; ++j) { windowed_frame[j] = spectral_frame[j] * g_hamming_window[j]; // Use static window } idct_512(windowed_frame, v.time_domain_buffer); v.buffer_pos = 0; ++v.current_spectral_frame; } float voice_sample = v.time_domain_buffer[v.buffer_pos] * v.volume; left_sample += voice_sample * v.pan_left; right_sample += voice_sample * v.pan_right; // Advance voice position ++v.buffer_pos; } output_buffer[i * 2] = left_sample; output_buffer[i * 2 + 1] = right_sample; // Update the peak with the new max (attack) g_current_output_peak = fmaxf( g_current_output_peak, fmaxf(fabsf(left_sample), fabsf(right_sample))); } #if defined(DEBUG_LOG_SYNTH) // Update elapsed time for event tracking (32000 Hz sample rate) const float sample_rate = 32000.0f; g_elapsed_time_sec += (float)num_frames / sample_rate; #endif /* defined(DEBUG_LOG_SYNTH) */ } int synth_get_active_voice_count() { int count = 0; for (int i = 0; i < MAX_VOICES; ++i) { if (g_voices[i].active) { ++count; } } return count; } float synth_get_output_peak() { return g_current_output_peak; }