// Fast Fourier Transform (FFT) implementation // Radix-2 Cooley-Tukey algorithm // Reference: Numerical Recipes, Press et al. #include "audio/fft.h" #include #include // Bit-reversal permutation (in-place) // Reorders array elements by reversing their binary indices static void bit_reverse_permute(float* real, float* imag, size_t N) { const size_t bits = 0; size_t temp_bits = N; size_t num_bits = 0; while (temp_bits > 1) { temp_bits >>= 1; num_bits++; } for (size_t i = 0; i < N; i++) { // Compute bit-reversed index size_t j = 0; size_t temp = i; for (size_t b = 0; b < num_bits; b++) { j = (j << 1) | (temp & 1); temp >>= 1; } // Swap if j > i (to avoid swapping twice) if (j > i) { const float tmp_real = real[i]; const float tmp_imag = imag[i]; real[i] = real[j]; imag[i] = imag[j]; real[j] = tmp_real; imag[j] = tmp_imag; } } } // In-place radix-2 FFT (after bit-reversal) // direction: +1 for forward FFT, -1 for inverse FFT static void fft_radix2(float* real, float* imag, size_t N, int direction) { const float PI = 3.14159265358979323846f; // Butterfly operations for (size_t stage_size = 2; stage_size <= N; stage_size *= 2) { const size_t half_stage = stage_size / 2; const float angle = direction * 2.0f * PI / stage_size; // Precompute twiddle factors for this stage float wr = 1.0f; float wi = 0.0f; const float wr_delta = cosf(angle); const float wi_delta = sinf(angle); for (size_t k = 0; k < half_stage; k++) { // Apply butterfly to all groups at this stage for (size_t group_start = k; group_start < N; group_start += stage_size) { const size_t i = group_start; const size_t j = group_start + half_stage; // Complex multiplication: (real[j] + i*imag[j]) * (wr + i*wi) const float temp_real = real[j] * wr - imag[j] * wi; const float temp_imag = real[j] * wi + imag[j] * wr; // Butterfly operation real[j] = real[i] - temp_real; imag[j] = imag[i] - temp_imag; real[i] = real[i] + temp_real; imag[i] = imag[i] + temp_imag; } // Update twiddle factor for next k (rotation) const float wr_old = wr; wr = wr_old * wr_delta - wi * wi_delta; wi = wr_old * wi_delta + wi * wr_delta; } } } void fft_forward(float* real, float* imag, size_t N) { bit_reverse_permute(real, imag, N); fft_radix2(real, imag, N, +1); } void fft_inverse(float* real, float* imag, size_t N) { bit_reverse_permute(real, imag, N); fft_radix2(real, imag, N, -1); // Scale by 1/N const float scale = 1.0f / N; for (size_t i = 0; i < N; i++) { real[i] *= scale; imag[i] *= scale; } } // DCT-II via FFT using double-and-mirror method // This is a more robust algorithm that avoids reordering issues // Reference: Numerical Recipes, Press et al. void dct_fft(const float* input, float* output, size_t N) { const float PI = 3.14159265358979323846f; // Allocate temporary arrays for 2N-point FFT const size_t M = 2 * N; float* real = new float[M]; float* imag = new float[M]; // Pack input: [x[0], x[1], ..., x[N-1], x[N-1], x[N-2], ..., x[1]] // This creates even symmetry for real-valued DCT for (size_t i = 0; i < N; i++) { real[i] = input[i]; } for (size_t i = 0; i < N; i++) { real[N + i] = input[N - 1 - i]; } memset(imag, 0, M * sizeof(float)); // Apply 2N-point FFT fft_forward(real, imag, M); // Extract DCT coefficients // DCT[k] = Re{FFT[k] * exp(-j*pi*k/(2*N))} * normalization // Note: Need to divide by 2 because we doubled the signal length for (size_t k = 0; k < N; k++) { const float angle = -PI * k / (2.0f * N); const float wr = cosf(angle); const float wi = sinf(angle); // Complex multiplication: (real + j*imag) * (wr + j*wi) // Real part: real*wr - imag*wi const float dct_value = real[k] * wr - imag[k] * wi; // Apply DCT-II normalization (divide by 2 for double-length FFT) if (k == 0) { output[k] = dct_value * sqrtf(1.0f / N) / 2.0f; } else { output[k] = dct_value * sqrtf(2.0f / N) / 2.0f; } } delete[] real; delete[] imag; } // IDCT (Inverse DCT-II) via FFT using double-and-mirror method // This is the inverse of the DCT-II (used for synthesis) void idct_fft(const float* input, float* output, size_t N) { const float PI = 3.14159265358979323846f; // Allocate temporary arrays for 2N-point FFT const size_t M = 2 * N; float* real = new float[M]; float* imag = new float[M]; // Prepare FFT input from DCT coefficients // IDCT = Re{IFFT[DCT * exp(j*pi*k/(2*N))]} * 2 for (size_t k = 0; k < N; k++) { const float angle = PI * k / (2.0f * N); // Positive for inverse const float wr = cosf(angle); const float wi = sinf(angle); // Apply inverse normalization float scaled_input; if (k == 0) { scaled_input = input[k] * sqrtf(N) * 2.0f; } else { scaled_input = input[k] * sqrtf(N / 2.0f) * 2.0f; } // Complex multiplication: DCT[k] * exp(j*theta) real[k] = scaled_input * wr; imag[k] = scaled_input * wi; } // Fill second half with conjugate symmetry (for real output) for (size_t k = 1; k < N; k++) { real[M - k] = real[k]; imag[M - k] = -imag[k]; } // Apply inverse FFT fft_inverse(real, imag, M); // Extract first N samples (real part only, imag should be ~0) for (size_t i = 0; i < N; i++) { output[i] = real[i]; } delete[] real; delete[] imag; }