# CNN v2 Binary Weight Format Specification Binary format for storing trained CNN v2 weights with static feature architecture. **File Extension:** `.bin` **Byte Order:** Little-endian **Version:** 2.0 (supports mip-level for parametric features) **Backward Compatible:** Version 1.0 files supported (mip_level=0) --- ## File Structure **Version 2 (current):** ``` ┌─────────────────────┐ │ Header (20 bytes) │ ├─────────────────────┤ │ Layer Info │ │ (20 bytes × N) │ ├─────────────────────┤ │ Weight Data │ │ (variable size) │ └─────────────────────┘ ``` **Version 1 (legacy):** ``` ┌─────────────────────┐ │ Header (16 bytes) │ ├─────────────────────┤ │ Layer Info │ │ (20 bytes × N) │ ├─────────────────────┤ │ Weight Data │ │ (variable size) │ └─────────────────────┘ ``` --- ## Header **Version 2 (20 bytes):** | Offset | Type | Field | Description | |--------|------|----------------|--------------------------------------| | 0x00 | u32 | magic | Magic number: `0x32_4E_4E_43` ("CNN2") | | 0x04 | u32 | version | Format version (2 for current) | | 0x08 | u32 | num_layers | Number of CNN layers (excludes static features) | | 0x0C | u32 | total_weights | Total f16 weight count across all layers | | 0x10 | u32 | mip_level | Mip level for p0-p3 features (0=original, 1=half, 2=quarter, 3=eighth) | **Version 1 (16 bytes) - Legacy:** | Offset | Type | Field | Description | |--------|------|----------------|--------------------------------------| | 0x00 | u32 | magic | Magic number: `0x32_4E_4E_43` ("CNN2") | | 0x04 | u32 | version | Format version (1) | | 0x08 | u32 | num_layers | Number of CNN layers | | 0x0C | u32 | total_weights | Total f16 weight count | **Note:** Loaders should check version field and handle both formats. Version 1 files treated as mip_level=0. --- ## Layer Info (20 bytes per layer) Repeated `num_layers` times: - **Version 2:** Starting at offset 0x14 (20 bytes) - **Version 1:** Starting at offset 0x10 (16 bytes) | Offset | Type | Field | Description | |-------------|------|----------------|--------------------------------------| | 0x00 | u32 | kernel_size | Convolution kernel dimension (3, 5, 7, etc.) | | 0x04 | u32 | in_channels | Input channel count (includes 8 static features for Layer 1) | | 0x08 | u32 | out_channels | Output channel count (max 8) | | 0x0C | u32 | weight_offset | Weight array start index (f16 units, relative to weight data section) | | 0x10 | u32 | weight_count | Number of f16 weights for this layer | **Layer Order:** Sequential (Layer 1, Layer 2, Layer 3, ...) --- ## Weight Data (variable size) Starts at offset: - **Version 2:** `20 + (num_layers × 20)` - **Version 1:** `16 + (num_layers × 20)` **Format:** Packed f16 pairs stored as u32 **Packing:** `u32 = (f16_hi << 16) | f16_lo` **Storage:** Sequential by layer, then by output channel, input channel, spatial position **Weight Indexing:** ``` weight_idx = output_ch × (in_channels × kernel_size²) + input_ch × kernel_size² + (ky × kernel_size + kx) ``` Where: - `output_ch` ∈ [0, out_channels) - `input_ch` ∈ [0, in_channels) - `ky`, `kx` ∈ [0, kernel_size) **Unpacking f16 from u32:** ```c uint32_t packed = weights_buffer[weight_idx / 2]; uint16_t f16_bits = (weight_idx % 2 == 0) ? (packed & 0xFFFF) : (packed >> 16); ``` --- ## Example: 3-Layer Network (Version 2) **Configuration:** - Mip level: 0 (original resolution) - Layer 0: 12→4, kernel 3×3 (432 weights) - Layer 1: 12→4, kernel 3×3 (432 weights) - Layer 2: 12→4, kernel 3×3 (432 weights) **File Layout:** ``` Offset Size Content ------ ---- ------- 0x00 20 Header (magic, version=2, layers=3, weights=1296, mip_level=0) 0x14 20 Layer 0 info (kernel=3, in=12, out=4, offset=0, count=432) 0x28 20 Layer 1 info (kernel=3, in=12, out=4, offset=432, count=432) 0x3C 20 Layer 2 info (kernel=3, in=12, out=4, offset=864, count=432) 0x50 2592 Weight data (1296 u32 packed f16 pairs) ---- Total: 2672 bytes (~2.6 KB) ``` --- ## Static Features Not stored in .bin file (computed at runtime): **8D Input Features:** 1. **p0** - Parametric feature 0 (from mip level) 2. **p1** - Parametric feature 1 (from mip level) 3. **p2** - Parametric feature 2 (from mip level) 4. **p3** - Parametric feature 3 (depth or from mip level) 5. **UV_X** - Normalized x coordinate [0,1] 6. **UV_Y** - Normalized y coordinate [0,1] 7. **sin(10 × UV_X)** - Spatial frequency encoding 8. **1.0** - Bias term **Mip Level Usage (p0-p3):** - `mip_level=0`: RGB from original resolution (mip 0) - `mip_level=1`: RGB from half resolution (mip 1), upsampled - `mip_level=2`: RGB from quarter resolution (mip 2), upsampled - `mip_level=3`: RGB from eighth resolution (mip 3), upsampled **Layer 0** receives input RGBD (4D) + static features (8D) = 12D input → 4D output. **Layer 1+** receive previous layer output (4D) + static features (8D) = 12D input → 4D output. --- ## Validation **Magic Check:** ```c uint32_t magic; fread(&magic, 4, 1, fp); if (magic != 0x32_4E_4E_43) { error("Invalid CNN v2 file"); } ``` **Version Check:** ```c uint32_t version; fread(&version, 4, 1, fp); if (version != 1 && version != 2) { error("Unsupported version"); } uint32_t header_size = (version == 1) ? 16 : 20; ``` **Size Check:** ```c expected_size = header_size + (num_layers × 20) + (total_weights × 2); if (file_size != expected_size) { error("Size mismatch"); } ``` **Weight Offset Sanity:** ```c // Each layer's offset should match cumulative count uint32_t cumulative = 0; for (int i = 0; i < num_layers; i++) { if (layers[i].weight_offset != cumulative) { error("Invalid offset"); } cumulative += layers[i].weight_count; } if (cumulative != total_weights) { error("Total mismatch"); } ``` --- ## Future Extensions **TODO: Flexible Feature Layout** Current limitation: Feature vector layout is hardcoded as `[p0, p1, p2, p3, uv_x, uv_y, sin10_x, bias]`. Proposed enhancement for version 3: - Add feature descriptor section to header - Specify feature count, types, and ordering - Support arbitrary 7D feature combinations (e.g., `[R, G, B, dx, dy, uv_x, bias]`) - Allow runtime shader generation based on descriptor - Enable experimentation without recompiling shaders Example descriptor format: ``` struct FeatureDescriptor { u32 feature_count; // Number of features (typically 7-8) u32 feature_types[8]; // Type enum per feature u32 feature_sources[8]; // Source enum (mip0, mip1, gradient, etc.) u32 reserved[8]; // Future use } ``` Benefits: - Training can experiment with different feature combinations - No shader recompilation needed - Single binary format supports multiple architectures - Easier A/B testing of feature effectiveness --- ## Related Files - `training/export_cnn_v2_weights.py` - Binary export tool - `src/gpu/effects/cnn_v2_effect.cc` - C++ loader - `tools/cnn_v2_test/index.html` - WebGPU validator - `doc/CNN_V2.md` - Architecture design