# CNN v2 Binary Weight Format Specification Binary format for storing trained CNN v2 weights with static feature architecture. **File Extension:** `.bin` **Byte Order:** Little-endian **Version:** 1.0 --- ## File Structure ``` ┌─────────────────────┐ │ Header (16 bytes) │ ├─────────────────────┤ │ Layer Info │ │ (20 bytes × N) │ ├─────────────────────┤ │ Weight Data │ │ (variable size) │ └─────────────────────┘ ``` --- ## Header (16 bytes) | Offset | Type | Field | Description | |--------|------|----------------|--------------------------------------| | 0x00 | u32 | magic | Magic number: `0x32_4E_4E_43` ("CNN2") | | 0x04 | u32 | version | Format version (currently 1) | | 0x08 | u32 | num_layers | Number of CNN layers (excludes static features) | | 0x0C | u32 | total_weights | Total f16 weight count across all layers | --- ## Layer Info (20 bytes per layer) Repeated `num_layers` times, starting at offset 0x10. | Offset | Type | Field | Description | |-------------|------|----------------|--------------------------------------| | 0x00 | u32 | kernel_size | Convolution kernel dimension (3, 5, 7, etc.) | | 0x04 | u32 | in_channels | Input channel count (includes 8 static features for Layer 1) | | 0x08 | u32 | out_channels | Output channel count (max 8) | | 0x0C | u32 | weight_offset | Weight array start index (f16 units, relative to weight data section) | | 0x10 | u32 | weight_count | Number of f16 weights for this layer | **Layer Order:** Sequential (Layer 1, Layer 2, Layer 3, ...) --- ## Weight Data (variable size) Starts at offset: `16 + (num_layers × 20)` **Format:** Packed f16 pairs stored as u32 **Packing:** `u32 = (f16_hi << 16) | f16_lo` **Storage:** Sequential by layer, then by output channel, input channel, spatial position **Weight Indexing:** ``` weight_idx = output_ch × (in_channels × kernel_size²) + input_ch × kernel_size² + (ky × kernel_size + kx) ``` Where: - `output_ch` ∈ [0, out_channels) - `input_ch` ∈ [0, in_channels) - `ky`, `kx` ∈ [0, kernel_size) **Unpacking f16 from u32:** ```c uint32_t packed = weights_buffer[weight_idx / 2]; uint16_t f16_bits = (weight_idx % 2 == 0) ? (packed & 0xFFFF) : (packed >> 16); ``` --- ## Example: 3-Layer Network **Configuration:** - Layer 1: 15→8, kernel 3×3 (1,080 weights) - Layer 2: 8→4, kernel 3×3 (288 weights) - Layer 3: 4→3, kernel 3×3 (108 weights) **File Layout:** ``` Offset Size Content ------ ---- ------- 0x00 16 Header (magic, version=1, layers=3, weights=1476) 0x10 20 Layer 1 info (kernel=3, in=15, out=8, offset=0, count=1080) 0x24 20 Layer 2 info (kernel=3, in=8, out=4, offset=1080, count=288) 0x38 20 Layer 3 info (kernel=3, in=4, out=3, offset=1368, count=108) 0x4C 1476 Weight data (738 u32 packed f16 pairs) ---- Total: 1528 bytes (~1.5 KB) ``` --- ## Static Features Not stored in .bin file (computed at runtime): **7D Input Features (packed as 8 channels):** 1. R (red channel) 2. G (green channel) 3. B (blue channel) 4. D (depth value) 5. UV_X (normalized x coordinate) 6. UV_Y (normalized y coordinate) 7. sin(10 × UV_X) (spatial frequency encoding) 8. 1.0 (bias term) **First CNN layer** receives all 8 static features + 0-7 previous layer outputs (total 8-15 input channels). --- ## Validation **Magic Check:** ```c uint32_t magic; fread(&magic, 4, 1, fp); if (magic != 0x32_4E_4E_43) { error("Invalid CNN v2 file"); } ``` **Size Check:** ```c expected_size = 16 + (num_layers × 20) + (total_weights × 2); if (file_size != expected_size) { error("Size mismatch"); } ``` **Weight Offset Sanity:** ```c // Each layer's offset should match cumulative count uint32_t cumulative = 0; for (int i = 0; i < num_layers; i++) { if (layers[i].weight_offset != cumulative) { error("Invalid offset"); } cumulative += layers[i].weight_count; } if (cumulative != total_weights) { error("Total mismatch"); } ``` --- ## Related Files - `training/export_cnn_v2_weights.py` - Binary export tool - `src/gpu/effects/cnn_v2_effect.cc` - C++ loader - `tools/cnn_v2_test/index.html` - WebGPU validator - `doc/CNN_V2.md` - Architecture design