// 3D SDF primitives fn sdSphere(p: vec3, r: f32) -> f32 { return length(p) - r; } fn sdBox(p: vec3, b: vec3) -> f32 { let q = abs(p) - b; return length(max(q, vec3(0.0))) + min(max(q.x, max(q.y, q.z)), 0.0); } fn sdTorus(p: vec3, t: vec2) -> f32 { let q = vec2(length(p.xz) - t.x, p.y); return length(q) - t.y; } fn sdPlane(p: vec3, n: vec3, h: f32) -> f32 { return dot(p, n) + h; } // 2D SDF primitives fn sdBox2D(p: vec2, b: vec2) -> f32 { let d = abs(p) - b; return length(max(d, vec2(0.0))) + min(max(d.x, d.y), 0.0); } fn sdEllipse(p: vec2, ab: vec2) -> f32 { var p_abs = abs(p); if (p_abs.x > p_abs.y) { p_abs = vec2(p_abs.y, p_abs.x); } let l = ab.y * ab.y - ab.x * ab.x; let m = ab.x * p_abs.x / l; let n = ab.y * p_abs.y / l; let m2 = m * m; let n2 = n * n; let c = (m2 + n2 - 1.0) / 3.0; let c3 = c * c * c; let d = c3 + m2 * n2; let g = m + m * n2; var co: f32; if (d < 0.0) { let h = acos((c3 + m2 * n2 * 2.0) / c3) / 3.0; let s = cos(h); let t = sin(h) * sqrt(3.0); co = (sqrt(-c * (s + t * 2.0) + m2) + sign(l) * sqrt(-c * (s - t * 2.0) + m2) + abs(g) / (sqrt(-c * (s + t * 2.0) + m2) * sqrt(-c * (s - t * 2.0) + m2)) - m) / 2.0; } else { let h = 2.0 * m * n * sqrt(d); let s = sign(c3 + m2 * n2 + h) * pow(abs(c3 + m2 * n2 + h), 1.0 / 3.0); let u = sign(c3 + m2 * n2 - h) * pow(abs(c3 + m2 * n2 - h), 1.0 / 3.0); let rx = -s - u + m2 * 2.0; let ry = (s - u) * sqrt(3.0); co = (ry / sqrt(sqrt(rx * rx + ry * ry) - rx) + 2.0 * g / sqrt(rx * rx + ry * ry) - m) / 2.0; } let si = sqrt(max(0.0, 1.0 - co * co)); return length(p_abs - vec2(ab.x * co, ab.y * si)) * sign(p_abs.y * ab.x * co - p_abs.x * ab.y * si); }