# CNN v1: Original Post-Processing Neural Network **Architecture:** 3-layer convolution, generated shader weights **Status:** Active (used in timeline), legacy architecture ## Overview Original CNN implementation with per-layer WGSL shaders. Supports multiple kernel sizes (1×1, 3×3, 5×5, 7×7) with generated weight arrays. **For new work, use CNN v2** (`cnn_v2/`) which provides: - Storage buffer architecture (~3.2 KB vs generated WGSL) - 7D static features (RGBD + UV + sin + bias) - Sigmoid activation with stable training - Dynamic layer configuration ## Quick Reference **Training:** ```bash ./cnn_v1/training/train_cnn.py --input training/input --target training/output \ --layers 3 --kernel_sizes 3,5,3 --epochs 5000 ``` **Integration:** - **C++:** `cnn_v1/src/cnn_effect.{h,cc}` - **Assets:** `workspaces/main/assets.txt` (lines 40-46) - **Timeline:** `workspaces/main/timeline.seq` (CNNEffect) ## Documentation - [CNN.md](docs/CNN.md) - Architecture overview - [CNN_V1_EFFECT.md](docs/CNN_V1_EFFECT.md) - Implementation details - [CNN_TEST_TOOL.md](docs/CNN_TEST_TOOL.md) - Testing guide - [CNN_DEBUG.md](docs/CNN_DEBUG.md) - Debugging notes ## Directory Structure ``` cnn_v1/ ├── README.md # This file ├── src/ │ ├── cnn_effect.h # Effect header │ └── cnn_effect.cc # Effect implementation ├── shaders/ # WGSL shaders (7 files) ├── training/ # Python training script └── docs/ # Documentation (7 markdown files) ``` ## Differences from CNN v2 | Feature | CNN v1 | CNN v2 | |---------|--------|--------| | Architecture | Generated WGSL weights | Storage buffer weights | | Input Features | 4D (RGBA/prev layer) | 12D (4D + 8D static) | | Activation | ReLU | Sigmoid + ReLU | | Size | ~Variable (WGSL gen) | ~3.2 KB (binary) | | Training | Full-image | Patch-based (default) | | Layer Config | Compile-time | Runtime (dynamic) | ## Migration Notes CNN v1 remains in the timeline for historical validation. For new effects or experiments, use CNN v2's enhanced feature set and compact binary format. See `cnn_v2/docs/CNN_V2.md` for CNN v2 architecture details.