fn get_normal_basic(p: vec3, obj_params: vec4) -> vec3 { let obj_type = obj_params.x; if (obj_type == 1.0) { return normalize(p); } let e = vec2(0.001, 0.0); return normalize(vec3( get_dist(p + e.xyy, obj_params) - get_dist(p - e.xyy, obj_params), get_dist(p + e.yxy, obj_params) - get_dist(p - e.yxy, obj_params), get_dist(p + e.yyx, obj_params) - get_dist(p - e.yyx, obj_params) )); } // Optimized normal estimation using tetrahedron pattern (4 SDF evals instead of 6). // Slightly less accurate than central differences but faster. // Uses tetrahedral gradient approximation with corners at (±1, ±1, ±1). fn get_normal_fast(p: vec3, obj_params: vec4) -> vec3 { let obj_type = obj_params.x; if (obj_type == 1.0) { return normalize(p); } let eps = 0.0001; let k = vec2(1.0, -1.0); return normalize( k.xyy * get_dist(p + k.xyy * eps, obj_params) + k.yyx * get_dist(p + k.yyx * eps, obj_params) + k.yxy * get_dist(p + k.yxy * eps, obj_params) + k.xxx * get_dist(p + k.xxx * eps, obj_params) ); } // Bump-mapped normal using central differences (6 samples: SDF + texture). // High quality, suitable for detailed surfaces with displacement mapping. // Note: Requires spherical_uv() function and get_dist() to be available in calling context. fn get_normal_bump( p: vec3, obj_params: vec4, noise_tex: texture_2d, noise_sampler: sampler, disp_strength: f32 ) -> vec3 { let e = vec2(0.005, 0.0); let q_x1 = p + e.xyy; let uv_x1 = spherical_uv(q_x1); let h_x1 = textureSample(noise_tex, noise_sampler, uv_x1).r; let d_x1 = get_dist(q_x1, obj_params) - disp_strength * h_x1; let q_x2 = p - e.xyy; let uv_x2 = spherical_uv(q_x2); let h_x2 = textureSample(noise_tex, noise_sampler, uv_x2).r; let d_x2 = get_dist(q_x2, obj_params) - disp_strength * h_x2; let q_y1 = p + e.yxy; let uv_y1 = spherical_uv(q_y1); let h_y1 = textureSample(noise_tex, noise_sampler, uv_y1).r; let d_y1 = get_dist(q_y1, obj_params) - disp_strength * h_y1; let q_y2 = p - e.yxy; let uv_y2 = spherical_uv(q_y2); let h_y2 = textureSample(noise_tex, noise_sampler, uv_y2).r; let d_y2 = get_dist(q_y2, obj_params) - disp_strength * h_y2; let q_z1 = p + e.yyx; let uv_z1 = spherical_uv(q_z1); let h_z1 = textureSample(noise_tex, noise_sampler, uv_z1).r; let d_z1 = get_dist(q_z1, obj_params) - disp_strength * h_z1; let q_z2 = p - e.yyx; let uv_z2 = spherical_uv(q_z2); let h_z2 = textureSample(noise_tex, noise_sampler, uv_z2).r; let d_z2 = get_dist(q_z2, obj_params) - disp_strength * h_z2; return normalize(vec3(d_x1 - d_x2, d_y1 - d_y2, d_z1 - d_z2)); } // Optimized bump-mapped normal using tetrahedron pattern (4 samples instead of 6). // 33% faster than get_normal_bump(), slightly less accurate. // Suitable for real-time rendering with displacement mapping. fn get_normal_bump_fast( p: vec3, obj_params: vec4, noise_tex: texture_2d, noise_sampler: sampler, disp_strength: f32 ) -> vec3 { let eps = 0.0005; let k = vec2(1.0, -1.0); let q1 = p + k.xyy * eps; let uv1 = spherical_uv(q1); let h1 = textureSample(noise_tex, noise_sampler, uv1).r; let d1 = get_dist(q1, obj_params) - disp_strength * h1; let q2 = p + k.yyx * eps; let uv2 = spherical_uv(q2); let h2 = textureSample(noise_tex, noise_sampler, uv2).r; let d2 = get_dist(q2, obj_params) - disp_strength * h2; let q3 = p + k.yxy * eps; let uv3 = spherical_uv(q3); let h3 = textureSample(noise_tex, noise_sampler, uv3).r; let d3 = get_dist(q3, obj_params) - disp_strength * h3; let q4 = p + k.xxx * eps; let uv4 = spherical_uv(q4); let h4 = textureSample(noise_tex, noise_sampler, uv4).r; let d4 = get_dist(q4, obj_params) - disp_strength * h4; return normalize(k.xyy * d1 + k.yyx * d2 + k.yxy * d3 + k.xxx * d4); } // Distance to an Axis-Aligned Bounding Box fn aabb_sdf(p: vec3, min_p: vec3, max_p: vec3) -> f32 { let center = (min_p + max_p) * 0.5; let extent = (max_p - min_p) * 0.5; let q = abs(p - center) - extent; return length(max(q, vec3(0.0))) + min(max(q.x, max(q.y, q.z)), 0.0); }