// Random number generation and noise functions for WGSL shaders. // Collection of hash functions and noise generators. // ============================================ // Hash Functions (Float Input) // ============================================ // Hash: f32 -> f32 // Fast fractional hash for floats fn hash_1f(x: f32) -> f32 { var v = fract(x * 0.3351); v *= v + 33.33; v *= v + v; return fract(v); } // Hash: vec2 -> f32 // 2D coordinate to single hash value fn hash_2f(p: vec2) -> f32 { var h = dot(p, vec2(127.1, 311.7)); return fract(sin(h) * 43758.5453123); } // Hash: vec2 -> vec2 // 2D coordinate to 2D hash (from Shadertoy 4djSRW) fn hash_2f_2f(p: vec2) -> vec2 { var p3 = fract(vec3(p.x, p.y, p.x) * vec3(0.1021, 0.1013, 0.0977)); p3 += dot(p3, p3.yzx + 33.33); return fract((p3.xx + p3.yz) * p3.zy); } // Hash: vec3 -> f32 // 3D coordinate to single hash value fn hash_3f(p: vec3) -> f32 { var h = dot(p, vec3(127.1, 311.7, 74.7)); return fract(sin(h) * 43758.5453123); } // Hash: vec3 -> vec3 // 3D coordinate to 3D hash fn hash_3f_3f(p: vec3) -> vec3 { var v = fract(p); v += dot(v, v.yxz + 32.41); return fract((v.xxy + v.yzz) * v.zyx); } // ============================================ // Hash Functions (Integer Input) // ============================================ // Hash: u32 -> f32 // Integer hash with bit operations (high quality) fn hash_1u(p: u32) -> f32 { var P = (p << 13u) ^ p; P = P * (P * P * 15731u + 789221u) + 1376312589u; return bitcast((P >> 9u) | 0x3f800000u) - 1.0; } // Hash: u32 -> vec2 fn hash_1u_2f(p: u32) -> vec2 { return vec2(hash_1u(p), hash_1u(p + 1423u)); } // Hash: u32 -> vec3 fn hash_1u_3f(p: u32) -> vec3 { return vec3(hash_1u(p), hash_1u(p + 1423u), hash_1u(p + 124453u)); } // ============================================ // Noise Functions // ============================================ // Value Noise: 2D // Interpolated grid noise using smoothstep fn noise_2d(p: vec2) -> f32 { let i = floor(p); let f = fract(p); let u = f * f * (3.0 - 2.0 * f); let n0 = hash_2f(i + vec2(0.0, 0.0)); let n1 = hash_2f(i + vec2(1.0, 0.0)); let n2 = hash_2f(i + vec2(0.0, 1.0)); let n3 = hash_2f(i + vec2(1.0, 1.0)); let ix0 = mix(n0, n1, u.x); let ix1 = mix(n2, n3, u.x); return mix(ix0, ix1, u.y); } // Value Noise: 3D fn noise_3d(p: vec3) -> f32 { let i = floor(p); let f = fract(p); let u = f * f * (3.0 - 2.0 * f); let n000 = hash_3f(i + vec3(0.0, 0.0, 0.0)); let n100 = hash_3f(i + vec3(1.0, 0.0, 0.0)); let n010 = hash_3f(i + vec3(0.0, 1.0, 0.0)); let n110 = hash_3f(i + vec3(1.0, 1.0, 0.0)); let n001 = hash_3f(i + vec3(0.0, 0.0, 1.0)); let n101 = hash_3f(i + vec3(1.0, 0.0, 1.0)); let n011 = hash_3f(i + vec3(0.0, 1.0, 1.0)); let n111 = hash_3f(i + vec3(1.0, 1.0, 1.0)); let ix00 = mix(n000, n100, u.x); let ix10 = mix(n010, n110, u.x); let ix01 = mix(n001, n101, u.x); let ix11 = mix(n011, n111, u.x); let iy0 = mix(ix00, ix10, u.y); let iy1 = mix(ix01, ix11, u.y); return mix(iy0, iy1, u.z); } // ============================================ // Special Functions // ============================================ // Gyroid function (periodic triply-orthogonal minimal surface) // Useful for procedural patterns and cellular structures fn gyroid(p: vec3) -> f32 { return abs(0.04 + dot(sin(p), cos(p.zxy))); } // Fractional Brownian Motion (FBM) 2D // Multi-octave noise for natural-looking variation fn fbm_2d(p: vec2, octaves: i32) -> f32 { var value = 0.0; var amplitude = 0.5; var frequency = 1.0; var pos = p; for (var i = 0; i < octaves; i++) { value += amplitude * noise_2d(pos * frequency); frequency *= 2.0; amplitude *= 0.5; } return value; } // Fractional Brownian Motion (FBM) 3D fn fbm_3d(p: vec3, octaves: i32) -> f32 { var value = 0.0; var amplitude = 0.5; var frequency = 1.0; var pos = p; for (var i = 0; i < octaves; i++) { value += amplitude * noise_3d(pos * frequency); frequency *= 2.0; amplitude *= 0.5; } return value; }