From 61104d5b9e1774c11f0dba3b6d6018dabc2bce8f Mon Sep 17 00:00:00 2001 From: skal Date: Tue, 10 Feb 2026 16:44:39 +0100 Subject: feat: CNN RGBD→grayscale with 7-channel augmented input MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit Upgrade CNN architecture to process RGBD input, output grayscale, with 7-channel layer inputs (RGBD + UV coords + grayscale). Architecture changes: - Inner layers: Conv2d(7→4) output RGBD - Final layer: Conv2d(7→1) output grayscale - All inputs normalized to [-1,1] for tanh activation - Removed CoordConv2d in favor of unified 7-channel input Training (train_cnn.py): - SimpleCNN: 7→4 (inner), 7→1 (final) architecture - Forward: Normalize RGBD/coords/gray to [-1,1] - Weight export: array, 36> (inner), array, 9> (final) - Dataset: Load RGBA (RGBD) input Shaders (cnn_conv3x3.wgsl): - Added cnn_conv3x3_7to4: 7-channel input → RGBD output - Added cnn_conv3x3_7to1: 7-channel input → grayscale output - Both normalize inputs and use flattened weight arrays Documentation: - CNN_EFFECT.md: Updated architecture, training, weight format - CNN_RGBD_GRAYSCALE_SUMMARY.md: Implementation summary - HOWTO.md: Added training command example Next: Train with RGBD input data Co-Authored-By: Claude Sonnet 4.5 --- workspaces/main/shaders/cnn/cnn_conv3x3.wgsl | 100 +++++++++++++++++++++++++++ 1 file changed, 100 insertions(+) (limited to 'workspaces/main/shaders') diff --git a/workspaces/main/shaders/cnn/cnn_conv3x3.wgsl b/workspaces/main/shaders/cnn/cnn_conv3x3.wgsl index 168c9e2..df58b4d 100644 --- a/workspaces/main/shaders/cnn/cnn_conv3x3.wgsl +++ b/workspaces/main/shaders/cnn/cnn_conv3x3.wgsl @@ -51,3 +51,103 @@ fn cnn_conv3x3_with_coord( return sum; } + +// Inner layers: 7→4 channels (RGBD output) +// weights: array, 36> (9 positions × 4 channels, each with 7 weights + bias) +fn cnn_conv3x3_7to4( + tex: texture_2d, + samp: sampler, + uv: vec2, + resolution: vec2, + original: vec4, + weights: array, 36> +) -> vec4 { + let step = 1.0 / resolution; + + // Compute grayscale from original and normalize to [-1,1] + let gray_01 = 0.2126*original.r + 0.7152*original.g + 0.0722*original.b; + let gray = (gray_01 - 0.5) * 2.0; + + // Normalize UV to [-1,1] + let uv_norm = (uv - 0.5) * 2.0; + + var sum = vec4(0.0); + + var pos = 0; + for (var dy = -1; dy <= 1; dy++) { + for (var dx = -1; dx <= 1; dx++) { + let offset = vec2(f32(dx), f32(dy)) * step; + let rgbd_01 = textureSample(tex, samp, uv + offset); + + // Normalize RGBD to [-1,1] + let rgbd = (rgbd_01 - 0.5) * 2.0; + + // 7-channel input: [R,G,B,D, uv.x, uv.y, gray] all in [-1,1] + let inputs = array( + rgbd.r, rgbd.g, rgbd.b, rgbd.a, + uv_norm.x, uv_norm.y, gray + ); + + // Accumulate for each output channel (RGBD) + for (var out_c = 0; out_c < 4; out_c++) { + let idx = pos * 4 + out_c; + var channel_sum = weights[idx][7]; // Bias (8th element) + for (var in_c = 0; in_c < 7; in_c++) { + channel_sum += weights[idx][in_c] * inputs[in_c]; + } + sum[out_c] += channel_sum; + } + + pos++; + } + } + + return sum; // Output in [-1,1] range +} + +// Final layer: 7→1 channel (scalar output) +// weights: array, 9> (9 positions, each with 7 weights + bias) +fn cnn_conv3x3_7to1( + tex: texture_2d, + samp: sampler, + uv: vec2, + resolution: vec2, + original: vec4, + weights: array, 9> +) -> f32 { + let step = 1.0 / resolution; + + // Normalize grayscale to [-1,1] + let gray_01 = 0.2126*original.r + 0.7152*original.g + 0.0722*original.b; + let gray = (gray_01 - 0.5) * 2.0; + + // Normalize UV to [-1,1] + let uv_norm = (uv - 0.5) * 2.0; + + var sum = 0.0; + + var pos = 0; + for (var dy = -1; dy <= 1; dy++) { + for (var dx = -1; dx <= 1; dx++) { + let offset = vec2(f32(dx), f32(dy)) * step; + let rgbd_01 = textureSample(tex, samp, uv + offset); + + // Normalize RGBD to [-1,1] + let rgbd = (rgbd_01 - 0.5) * 2.0; + + // 7-channel input all in [-1,1] + sum += weights[pos][0] * rgbd.r; + sum += weights[pos][1] * rgbd.g; + sum += weights[pos][2] * rgbd.b; + sum += weights[pos][3] * rgbd.a; + sum += weights[pos][4] * uv_norm.x; + sum += weights[pos][5] * uv_norm.y; + sum += weights[pos][6] * gray; + sum += weights[pos][7]; // Bias + + pos++; + } + } + + return sum; // Output in [-1,1], needs denormalization +} -- cgit v1.2.3