summaryrefslogtreecommitdiff
path: root/training
AgeCommit message (Collapse)Author
19 hoursfeat: Add multi-layer CNN support with framebuffer capture and blend controlskal
Implements automatic layer chaining and generic framebuffer capture API for multi-layer neural network effects with proper original input preservation. Key changes: - Effect::needs_framebuffer_capture() - generic API for pre-render capture - MainSequence: auto-capture to "captured_frame" auxiliary texture - CNNEffect: multi-layer support via layer_index/total_layers params - seq_compiler: expands "layers=N" to N chained effect instances - Shader: @binding(4) original_input available to all layers - Training: generates layer switches and original input binding - Blend: mix(original, result, blend_amount) uses layer 0 input Timeline syntax: CNNEffect layers=3 blend=0.7 Co-Authored-By: Claude Sonnet 4.5 <noreply@anthropic.com>
21 hoursdocs: Update and streamline CNN training documentationskal
- Document coordinate-aware layer 0 architecture - Add checkpointing examples and options table - Consolidate training workflow with practical examples - Clarify CoordConv2d usage and size impact - Streamline training/README.md structure Co-Authored-By: Claude Sonnet 4.5 <noreply@anthropic.com>
21 hoursfeat: Add checkpointing support to CNN training scriptskal
- Save checkpoints every N epochs (--checkpoint-every) - Resume from checkpoint (--resume) - Store model, optimizer, epoch, loss, and architecture info - Auto-create checkpoint directory Co-Authored-By: Claude Sonnet 4.5 <noreply@anthropic.com>
21 hoursfix: Auto-expand single kernel size to all layers in training scriptskal
Co-Authored-By: Claude Sonnet 4.5 <noreply@anthropic.com>
21 hoursupdate target imagesskal
21 hoursfeat: Add coordinate-aware CNN layer 0 for position-dependent stylizationskal
- Implement CoordConv2d custom layer accepting (x,y) patch center - Split layer 0 weights: rgba_weights (9x mat4x4) + coord_weights (mat2x4) - Add *_with_coord() functions to 3x3/5x5/7x7 convolution shaders - Update training script to generate coordinate grid and export split weights - Regenerate placeholder weights with new format Size impact: +32B coord weights + ~100B shader code = +132B total All 36 tests passing (100%) handoff(Claude): CNN coordinate awareness implemented, ready for training Co-Authored-By: Claude Sonnet 4.5 <noreply@anthropic.com>