summaryrefslogtreecommitdiff
path: root/scripts/validate_cnn_v2.sh
AgeCommit message (Collapse)Author
31 hoursCNN v2: parametric static features - Phases 1-4skal
Infrastructure for enhanced CNN post-processing with 7D feature input. Phase 1: Shaders - Static features compute (RGBD + UV + sin10_x + bias → 8×f16) - Layer template (convolution skeleton, packing/unpacking) - 3 mip level support for multi-scale features Phase 2: C++ Effect - CNNv2Effect class (multi-pass architecture) - Texture management (static features, layer buffers) - Build integration (CMakeLists, assets, tests) Phase 3: Training Pipeline - train_cnn_v2.py: PyTorch model with static feature concatenation - export_cnn_v2_shader.py: f32→f16 quantization, WGSL generation - Configurable architecture (kernels, channels) Phase 4: Validation - validate_cnn_v2.sh: End-to-end pipeline - Checkpoint → shaders → build → test images Tests: 36/36 passing Next: Complete render pipeline implementation (bind groups, multi-pass) Co-Authored-By: Claude Sonnet 4.5 <noreply@anthropic.com>
31 hoursCNN v2: parametric static features - design docskal
Design document for CNN v2 with enhanced feature inputs: - 7D static features: RGBD + UV + sin encoding + bias - Per-layer configurable kernels (1×1, 3×3, 5×5) - Float16 weight storage (~6.4 KB vs 3.2 KB) - Multi-pass architecture with static feature compute Implementation plan: 1. Static features compute shader (RGBD + UV + sin + bias) 2. C++ effect class (CNNv2Effect) 3. Training pipeline (train_cnn_v2.py, export_cnn_v2_shader.py) 4. Validation tooling (validate_cnn_v2.sh) Files: - doc/CNN_V2.md: Complete technical design (architecture, training, export) - scripts/validate_cnn_v2.sh: End-to-end validation script - TODO.md: Add CNN v2 as Priority 2 task - doc/HOWTO.md: Add CNN v2 validation usage Target: <10 KB for 64k demo constraint handoff(Claude): CNN v2 design ready for implementation