|
**New Documentation:**
- `doc/CNN_EFFECT.md` (223 lines): Comprehensive implementation guide
- Architecture overview (file structure, shader composition)
- Usage examples (C++ API, timeline integration)
- Training workflow (planned)
- Implementation details (convolution signatures, weight storage)
- Size budget breakdown (~5-8 KB total)
- Testing and troubleshooting
**Updated Documentation:**
- `doc/CNN.md`: Added implementation status section
- Completed items (✅ modular shaders, C++ class, tests)
- Pending items (⏳ training script, multi-layer, quantization)
- Size impact summary
- `PROJECT_CONTEXT.md`:
- Added "Effects: CNN post-processing foundation" to Current Status
- Added `CNN_EFFECT.md` to Technical Reference list
**Summary:**
CNN effect foundation complete with modular WGSL architecture, ready for
training script integration. All tests passing (36/36). ~5-8 KB footprint.
handoff(Claude): Documentation complete for CNN effect implementation
|