| Age | Commit message (Collapse) | Author |
|
Layer 0 output is clamped [0,1], does not need 0.5 dimming.
Middle layers (ReLU) keep 0.5 scale for values >1.
Co-Authored-By: Claude Sonnet 4.5 <noreply@anthropic.com>
|
|
Training changes:
- Changed p3 default depth from 0.0 to 1.0 (far plane semantics)
- Extract depth from target alpha channel in both datasets
- Consistent alpha-as-depth across training/validation
Test tool enhancements (cnn_test):
- Added load_depth_from_alpha() for R32Float depth texture
- Fixed bind group layout for UnfilterableFloat sampling
- Added --save-intermediates with per-channel grayscale composites
- Each layer saved as 4x wide PNG (p0-p3 stacked horizontally)
- Global layers_composite.png for vertical layer stack overview
Investigation notes:
- Static features p4-p7 ARE computed and bound correctly
- Sin_20_y pattern visibility difference between tools under investigation
- Binary weights timestamp (Feb 13 20:36) vs HTML tool (Feb 13 22:12)
- Next: Update HTML tool with canonical binary weights
handoff(Claude): HTML tool weights update pending - base64 encoded
canonical weights ready in /tmp/weights_b64.txt for line 392 replacement.
Co-Authored-By: Claude Sonnet 4.5 <noreply@anthropic.com>
|
|
- Add binary weight format (header + layer info + packed f16)
- New export_cnn_v2_weights.py for binary weight export
- Single cnn_v2_compute.wgsl shader with storage buffer
- Load weights in CNNv2Effect::load_weights()
- Create layer compute pipeline with 5 bindings
- Fast training config: 100 epochs, 3×3 kernels, 8→4→4 channels
Next: Complete bind group creation and multi-layer compute execution
|