diff options
Diffstat (limited to 'doc/CNN_EFFECT.md')
| -rw-r--r-- | doc/CNN_EFFECT.md | 239 |
1 files changed, 114 insertions, 125 deletions
diff --git a/doc/CNN_EFFECT.md b/doc/CNN_EFFECT.md index 9045739..ec70b13 100644 --- a/doc/CNN_EFFECT.md +++ b/doc/CNN_EFFECT.md @@ -6,12 +6,13 @@ Neural network-based stylization for rendered scenes. ## Overview -The CNN effect applies trainable convolutional neural network layers to post-process 3D rendered output, enabling artistic stylization (e.g., painterly, sketch, cel-shaded effects) with minimal runtime overhead. +Trainable convolutional neural network layers for artistic stylization (painterly, sketch, cel-shaded effects) with minimal runtime overhead. **Key Features:** +- Position-aware layer 0 (coordinate input for vignetting, edge effects) - Multi-layer convolutions (3×3, 5×5, 7×7 kernels) - Modular WGSL shader architecture -- Hardcoded weights (trained offline) +- Hardcoded weights (trained offline via PyTorch) - Residual connections for stable learning - ~5-8 KB binary footprint @@ -19,144 +20,141 @@ The CNN effect applies trainable convolutional neural network layers to post-pro ## Architecture +### Coordinate-Aware Layer 0 + +Layer 0 accepts normalized (x,y) patch center coordinates alongside RGBA samples: + +```wgsl +fn cnn_conv3x3_with_coord( + tex: texture_2d<f32>, + samp: sampler, + uv: vec2<f32>, # Center position [0,1] + resolution: vec2<f32>, + rgba_weights: array<mat4x4<f32>, 9>, # 9 samples × 4×4 matrix + coord_weights: mat2x4<f32>, # 2 coords → 4 outputs + bias: vec4<f32> +) -> vec4<f32> +``` + +**Input structure:** 9 RGBA samples (36 values) + 1 xy coordinate (2 values) = 38 inputs → 4 outputs + +**Size impact:** +32B coord weights, kernel-agnostic + +**Use cases:** Position-dependent stylization (vignettes, corner darkening, radial gradients) + ### File Structure ``` src/gpu/effects/ - cnn_effect.h # CNNEffect class - cnn_effect.cc # Implementation + cnn_effect.h/cc # CNNEffect class workspaces/main/shaders/cnn/ - cnn_activation.wgsl # Activation functions (tanh, ReLU, sigmoid, leaky_relu) - cnn_conv3x3.wgsl # 3×3 convolution - cnn_conv5x5.wgsl # 5×5 convolution - cnn_conv7x7.wgsl # 7×7 convolution - cnn_weights_generated.wgsl # Weight arrays (generated by training script) + cnn_activation.wgsl # tanh, ReLU, sigmoid, leaky_relu + cnn_conv3x3.wgsl # 3×3 convolution (standard + coord-aware) + cnn_conv5x5.wgsl # 5×5 convolution (standard + coord-aware) + cnn_conv7x7.wgsl # 7×7 convolution (standard + coord-aware) + cnn_weights_generated.wgsl # Weight arrays (auto-generated) cnn_layer.wgsl # Main shader (composes above snippets) ``` -### Shader Composition - -`cnn_layer.wgsl` uses `#include` directives (resolved by `ShaderComposer`): -```wgsl -#include "common_uniforms" -#include "cnn_activation" -#include "cnn_conv3x3" -#include "cnn_weights_generated" -``` - --- -## Usage - -### C++ Integration +## Training Workflow -```cpp -#include "gpu/effects/cnn_effect.h" +### 1. Prepare Training Data -// Create effect (1 layer for now, expandable to 4) -auto cnn = std::make_shared<CNNEffect>(ctx, /*num_layers=*/1); +Collect input/target image pairs: +- **Input:** Raw 3D render +- **Target:** Artistic style (hand-painted, filtered, stylized) -// Add to timeline -timeline.add_effect(cnn, start_time, end_time); +```bash +training/input/img_000.png # Raw render +training/output/img_000.png # Stylized target ``` -### Timeline Example - -``` -SEQUENCE 10.0 0 - EFFECT CNNEffect 10.0 15.0 0 # Apply CNN stylization for 5 seconds +Use `image_style_processor.py` to generate targets: +```bash +python3 training/image_style_processor.py input/ output/ pencil_sketch ``` ---- - -## Training Workflow (Planned) +### 2. Train Network -**Step 1: Prepare Training Data** ```bash -# Collect before/after image pairs -# - Before: Raw 3D render -# - After: Target artistic style (hand-painted, filtered, etc.) +python3 training/train_cnn.py \ + --input training/input \ + --target training/output \ + --layers 1 \ + --kernel-sizes 3 \ + --epochs 500 \ + --checkpoint-every 50 ``` -**Step 2: Train Network** +**Multi-layer example:** ```bash -python scripts/train_cnn.py \ - --input rendered_scene.png \ - --target stylized_scene.png \ +python3 training/train_cnn.py \ + --input training/input \ + --target training/output \ --layers 3 \ - --kernel_sizes 3,5,3 \ - --epochs 100 + --kernel-sizes 3,5,3 \ + --epochs 1000 \ + --checkpoint-every 100 ``` -**Step 3: Export Weights** -```python -# scripts/train_cnn.py automatically generates: -# workspaces/main/shaders/cnn/cnn_weights_generated.wgsl +**Resume from checkpoint:** +```bash +python3 training/train_cnn.py \ + --input training/input \ + --target training/output \ + --resume training/checkpoints/checkpoint_epoch_200.pth ``` -**Step 4: Rebuild** +### 3. Rebuild Demo + +Training script auto-generates `cnn_weights_generated.wgsl`: ```bash cmake --build build -j4 +./build/demo64k ``` --- -## Implementation Details - -### Convolution Function Signature - -```wgsl -fn cnn_conv3x3( - tex: texture_2d<f32>, - samp: sampler, - uv: vec2<f32>, - resolution: vec2<f32>, - weights: array<mat4x4<f32>, 9>, # 9 samples × 4×4 matrix - bias: vec4<f32> -) -> vec4<f32> -``` +## Usage -- Samples 9 pixels (3×3 neighborhood) -- Applies 4×4 weight matrix per sample (RGBA channels) -- Returns weighted sum + bias (pre-activation) +### C++ Integration -### Weight Storage +```cpp +#include "gpu/effects/cnn_effect.h" -Weights are stored as WGSL constants: -```wgsl -const weights_layer0: array<mat4x4<f32>, 9> = array( - mat4x4<f32>(1.0, 0.0, 0.0, 0.0, ...), # Center pixel - mat4x4<f32>(0.0, 0.0, 0.0, 0.0, ...), # Neighbor 1 - // ... 7 more matrices -); -const bias_layer0 = vec4<f32>(0.0, 0.0, 0.0, 0.0); +auto cnn = std::make_shared<CNNEffect>(ctx, /*num_layers=*/1); +timeline.add_effect(cnn, start_time, end_time); ``` -### Residual Connection +### Timeline Example -Final layer adds original input: -```wgsl -if (params.use_residual != 0) { - let input = textureSample(txt, smplr, uv); - result = input + result * 0.3; # Blend 30% stylization -} +``` +SEQUENCE 10.0 0 + EFFECT CNNEffect 10.0 15.0 0 ``` --- -## Multi-Layer Rendering (Future) - -For N layers, use ping-pong textures: +## Weight Storage -``` -Pass 0: input → temp_a (conv + activate) -Pass 1: temp_a → temp_b (conv + activate) -Pass 2: temp_b → temp_a (conv + activate) -Pass 3: temp_a → screen (conv + activate + residual) +**Layer 0 (coordinate-aware):** +```wgsl +const rgba_weights_layer0: array<mat4x4<f32>, 9> = array(...); +const coord_weights_layer0 = mat2x4<f32>( + 0.1, -0.2, 0.0, 0.0, # x-coord weights + -0.1, 0.0, 0.2, 0.0 # y-coord weights +); +const bias_layer0 = vec4<f32>(0.0, 0.0, 0.0, 0.0); ``` -**Current Status:** Single-layer implementation. Multi-pass infrastructure ready but not exposed. +**Layers 1+ (standard):** +```wgsl +const weights_layer1: array<mat4x4<f32>, 9> = array(...); +const bias_layer1 = vec4<f32>(0.0, 0.0, 0.0, 0.0); +``` --- @@ -164,60 +162,51 @@ Pass 3: temp_a → screen (conv + activate + residual) | Component | Size | Notes | |-----------|------|-------| -| `cnn_activation.wgsl` | ~200 B | 4 activation functions | -| `cnn_conv3x3.wgsl` | ~400 B | 3×3 convolution logic | -| `cnn_conv5x5.wgsl` | ~600 B | 5×5 convolution logic | -| `cnn_conv7x7.wgsl` | ~800 B | 7×7 convolution logic | -| `cnn_layer.wgsl` | ~800 B | Main shader | -| `cnn_effect.cc` | ~300 B | C++ implementation | -| **Weights (variable)** | **2-6 KB** | Depends on network depth/width | -| **Total** | **5-9 KB** | Acceptable for 64k demo | +| Activation functions | ~200 B | 4 functions | +| Conv3x3 (standard + coord) | ~500 B | Both variants | +| Conv5x5 (standard + coord) | ~700 B | Both variants | +| Conv7x7 (standard + coord) | ~900 B | Both variants | +| Main shader | ~800 B | Layer composition | +| C++ implementation | ~300 B | Effect class | +| **Coord weights** | **+32 B** | Per-layer overhead (layer 0 only) | +| **RGBA weights** | **2-6 KB** | Depends on depth/kernel sizes | +| **Total** | **5-9 KB** | Acceptable for 64k | -**Optimization Strategies:** +**Optimization strategies:** - Quantize weights (float32 → int8) - Prune near-zero weights -- Share weights across layers -- Use separable convolutions (not yet implemented) +- Use separable convolutions --- ## Testing ```bash -# Run effect test -./build/test_demo_effects - -# Visual test in demo -./build/demo64k # CNN appears in timeline if added +./build/test_demo_effects # CNN construction/shader tests +./build/demo64k # Visual test ``` -**Test Coverage:** -- Construction/initialization -- Shader compilation -- Bind group creation -- Render pass execution - --- ## Troubleshooting **Shader compilation fails:** - Check `cnn_weights_generated.wgsl` syntax -- Verify all snippets registered in `shaders.cc::InitShaderComposer()` +- Verify snippets registered in `shaders.cc::InitShaderComposer()` **Black/corrupted output:** -- Weights likely untrained (using placeholder identity) -- Check residual blending factor (0.3 default) +- Weights untrained (identity placeholder) +- Check residual blending (0.3 default) -**Performance issues:** -- Reduce kernel sizes (7×7 → 3×3) -- Decrease layer count -- Profile with `--hot-reload` to measure frame time +**Training loss not decreasing:** +- Lower learning rate (`--learning-rate 0.0001`) +- More epochs (`--epochs 1000`) +- Check input/target image alignment --- ## References -- **Shader Composition:** `doc/SEQUENCE.md` (shader parameters) -- **Effect System:** `src/gpu/effect.h` (Effect base class) -- **Training (external):** TensorFlow/PyTorch CNN tutorials +- **Training Script:** `training/train_cnn.py` +- **Shader Composition:** `doc/SEQUENCE.md` +- **Effect System:** `src/gpu/effect.h` |
