summaryrefslogtreecommitdiff
path: root/doc/CNN_EFFECT.md
diff options
context:
space:
mode:
Diffstat (limited to 'doc/CNN_EFFECT.md')
-rw-r--r--doc/CNN_EFFECT.md239
1 files changed, 114 insertions, 125 deletions
diff --git a/doc/CNN_EFFECT.md b/doc/CNN_EFFECT.md
index 9045739..ec70b13 100644
--- a/doc/CNN_EFFECT.md
+++ b/doc/CNN_EFFECT.md
@@ -6,12 +6,13 @@ Neural network-based stylization for rendered scenes.
## Overview
-The CNN effect applies trainable convolutional neural network layers to post-process 3D rendered output, enabling artistic stylization (e.g., painterly, sketch, cel-shaded effects) with minimal runtime overhead.
+Trainable convolutional neural network layers for artistic stylization (painterly, sketch, cel-shaded effects) with minimal runtime overhead.
**Key Features:**
+- Position-aware layer 0 (coordinate input for vignetting, edge effects)
- Multi-layer convolutions (3×3, 5×5, 7×7 kernels)
- Modular WGSL shader architecture
-- Hardcoded weights (trained offline)
+- Hardcoded weights (trained offline via PyTorch)
- Residual connections for stable learning
- ~5-8 KB binary footprint
@@ -19,144 +20,141 @@ The CNN effect applies trainable convolutional neural network layers to post-pro
## Architecture
+### Coordinate-Aware Layer 0
+
+Layer 0 accepts normalized (x,y) patch center coordinates alongside RGBA samples:
+
+```wgsl
+fn cnn_conv3x3_with_coord(
+ tex: texture_2d<f32>,
+ samp: sampler,
+ uv: vec2<f32>, # Center position [0,1]
+ resolution: vec2<f32>,
+ rgba_weights: array<mat4x4<f32>, 9>, # 9 samples × 4×4 matrix
+ coord_weights: mat2x4<f32>, # 2 coords → 4 outputs
+ bias: vec4<f32>
+) -> vec4<f32>
+```
+
+**Input structure:** 9 RGBA samples (36 values) + 1 xy coordinate (2 values) = 38 inputs → 4 outputs
+
+**Size impact:** +32B coord weights, kernel-agnostic
+
+**Use cases:** Position-dependent stylization (vignettes, corner darkening, radial gradients)
+
### File Structure
```
src/gpu/effects/
- cnn_effect.h # CNNEffect class
- cnn_effect.cc # Implementation
+ cnn_effect.h/cc # CNNEffect class
workspaces/main/shaders/cnn/
- cnn_activation.wgsl # Activation functions (tanh, ReLU, sigmoid, leaky_relu)
- cnn_conv3x3.wgsl # 3×3 convolution
- cnn_conv5x5.wgsl # 5×5 convolution
- cnn_conv7x7.wgsl # 7×7 convolution
- cnn_weights_generated.wgsl # Weight arrays (generated by training script)
+ cnn_activation.wgsl # tanh, ReLU, sigmoid, leaky_relu
+ cnn_conv3x3.wgsl # 3×3 convolution (standard + coord-aware)
+ cnn_conv5x5.wgsl # 5×5 convolution (standard + coord-aware)
+ cnn_conv7x7.wgsl # 7×7 convolution (standard + coord-aware)
+ cnn_weights_generated.wgsl # Weight arrays (auto-generated)
cnn_layer.wgsl # Main shader (composes above snippets)
```
-### Shader Composition
-
-`cnn_layer.wgsl` uses `#include` directives (resolved by `ShaderComposer`):
-```wgsl
-#include "common_uniforms"
-#include "cnn_activation"
-#include "cnn_conv3x3"
-#include "cnn_weights_generated"
-```
-
---
-## Usage
-
-### C++ Integration
+## Training Workflow
-```cpp
-#include "gpu/effects/cnn_effect.h"
+### 1. Prepare Training Data
-// Create effect (1 layer for now, expandable to 4)
-auto cnn = std::make_shared<CNNEffect>(ctx, /*num_layers=*/1);
+Collect input/target image pairs:
+- **Input:** Raw 3D render
+- **Target:** Artistic style (hand-painted, filtered, stylized)
-// Add to timeline
-timeline.add_effect(cnn, start_time, end_time);
+```bash
+training/input/img_000.png # Raw render
+training/output/img_000.png # Stylized target
```
-### Timeline Example
-
-```
-SEQUENCE 10.0 0
- EFFECT CNNEffect 10.0 15.0 0 # Apply CNN stylization for 5 seconds
+Use `image_style_processor.py` to generate targets:
+```bash
+python3 training/image_style_processor.py input/ output/ pencil_sketch
```
----
-
-## Training Workflow (Planned)
+### 2. Train Network
-**Step 1: Prepare Training Data**
```bash
-# Collect before/after image pairs
-# - Before: Raw 3D render
-# - After: Target artistic style (hand-painted, filtered, etc.)
+python3 training/train_cnn.py \
+ --input training/input \
+ --target training/output \
+ --layers 1 \
+ --kernel-sizes 3 \
+ --epochs 500 \
+ --checkpoint-every 50
```
-**Step 2: Train Network**
+**Multi-layer example:**
```bash
-python scripts/train_cnn.py \
- --input rendered_scene.png \
- --target stylized_scene.png \
+python3 training/train_cnn.py \
+ --input training/input \
+ --target training/output \
--layers 3 \
- --kernel_sizes 3,5,3 \
- --epochs 100
+ --kernel-sizes 3,5,3 \
+ --epochs 1000 \
+ --checkpoint-every 100
```
-**Step 3: Export Weights**
-```python
-# scripts/train_cnn.py automatically generates:
-# workspaces/main/shaders/cnn/cnn_weights_generated.wgsl
+**Resume from checkpoint:**
+```bash
+python3 training/train_cnn.py \
+ --input training/input \
+ --target training/output \
+ --resume training/checkpoints/checkpoint_epoch_200.pth
```
-**Step 4: Rebuild**
+### 3. Rebuild Demo
+
+Training script auto-generates `cnn_weights_generated.wgsl`:
```bash
cmake --build build -j4
+./build/demo64k
```
---
-## Implementation Details
-
-### Convolution Function Signature
-
-```wgsl
-fn cnn_conv3x3(
- tex: texture_2d<f32>,
- samp: sampler,
- uv: vec2<f32>,
- resolution: vec2<f32>,
- weights: array<mat4x4<f32>, 9>, # 9 samples × 4×4 matrix
- bias: vec4<f32>
-) -> vec4<f32>
-```
+## Usage
-- Samples 9 pixels (3×3 neighborhood)
-- Applies 4×4 weight matrix per sample (RGBA channels)
-- Returns weighted sum + bias (pre-activation)
+### C++ Integration
-### Weight Storage
+```cpp
+#include "gpu/effects/cnn_effect.h"
-Weights are stored as WGSL constants:
-```wgsl
-const weights_layer0: array<mat4x4<f32>, 9> = array(
- mat4x4<f32>(1.0, 0.0, 0.0, 0.0, ...), # Center pixel
- mat4x4<f32>(0.0, 0.0, 0.0, 0.0, ...), # Neighbor 1
- // ... 7 more matrices
-);
-const bias_layer0 = vec4<f32>(0.0, 0.0, 0.0, 0.0);
+auto cnn = std::make_shared<CNNEffect>(ctx, /*num_layers=*/1);
+timeline.add_effect(cnn, start_time, end_time);
```
-### Residual Connection
+### Timeline Example
-Final layer adds original input:
-```wgsl
-if (params.use_residual != 0) {
- let input = textureSample(txt, smplr, uv);
- result = input + result * 0.3; # Blend 30% stylization
-}
+```
+SEQUENCE 10.0 0
+ EFFECT CNNEffect 10.0 15.0 0
```
---
-## Multi-Layer Rendering (Future)
-
-For N layers, use ping-pong textures:
+## Weight Storage
-```
-Pass 0: input → temp_a (conv + activate)
-Pass 1: temp_a → temp_b (conv + activate)
-Pass 2: temp_b → temp_a (conv + activate)
-Pass 3: temp_a → screen (conv + activate + residual)
+**Layer 0 (coordinate-aware):**
+```wgsl
+const rgba_weights_layer0: array<mat4x4<f32>, 9> = array(...);
+const coord_weights_layer0 = mat2x4<f32>(
+ 0.1, -0.2, 0.0, 0.0, # x-coord weights
+ -0.1, 0.0, 0.2, 0.0 # y-coord weights
+);
+const bias_layer0 = vec4<f32>(0.0, 0.0, 0.0, 0.0);
```
-**Current Status:** Single-layer implementation. Multi-pass infrastructure ready but not exposed.
+**Layers 1+ (standard):**
+```wgsl
+const weights_layer1: array<mat4x4<f32>, 9> = array(...);
+const bias_layer1 = vec4<f32>(0.0, 0.0, 0.0, 0.0);
+```
---
@@ -164,60 +162,51 @@ Pass 3: temp_a → screen (conv + activate + residual)
| Component | Size | Notes |
|-----------|------|-------|
-| `cnn_activation.wgsl` | ~200 B | 4 activation functions |
-| `cnn_conv3x3.wgsl` | ~400 B | 3×3 convolution logic |
-| `cnn_conv5x5.wgsl` | ~600 B | 5×5 convolution logic |
-| `cnn_conv7x7.wgsl` | ~800 B | 7×7 convolution logic |
-| `cnn_layer.wgsl` | ~800 B | Main shader |
-| `cnn_effect.cc` | ~300 B | C++ implementation |
-| **Weights (variable)** | **2-6 KB** | Depends on network depth/width |
-| **Total** | **5-9 KB** | Acceptable for 64k demo |
+| Activation functions | ~200 B | 4 functions |
+| Conv3x3 (standard + coord) | ~500 B | Both variants |
+| Conv5x5 (standard + coord) | ~700 B | Both variants |
+| Conv7x7 (standard + coord) | ~900 B | Both variants |
+| Main shader | ~800 B | Layer composition |
+| C++ implementation | ~300 B | Effect class |
+| **Coord weights** | **+32 B** | Per-layer overhead (layer 0 only) |
+| **RGBA weights** | **2-6 KB** | Depends on depth/kernel sizes |
+| **Total** | **5-9 KB** | Acceptable for 64k |
-**Optimization Strategies:**
+**Optimization strategies:**
- Quantize weights (float32 → int8)
- Prune near-zero weights
-- Share weights across layers
-- Use separable convolutions (not yet implemented)
+- Use separable convolutions
---
## Testing
```bash
-# Run effect test
-./build/test_demo_effects
-
-# Visual test in demo
-./build/demo64k # CNN appears in timeline if added
+./build/test_demo_effects # CNN construction/shader tests
+./build/demo64k # Visual test
```
-**Test Coverage:**
-- Construction/initialization
-- Shader compilation
-- Bind group creation
-- Render pass execution
-
---
## Troubleshooting
**Shader compilation fails:**
- Check `cnn_weights_generated.wgsl` syntax
-- Verify all snippets registered in `shaders.cc::InitShaderComposer()`
+- Verify snippets registered in `shaders.cc::InitShaderComposer()`
**Black/corrupted output:**
-- Weights likely untrained (using placeholder identity)
-- Check residual blending factor (0.3 default)
+- Weights untrained (identity placeholder)
+- Check residual blending (0.3 default)
-**Performance issues:**
-- Reduce kernel sizes (7×7 → 3×3)
-- Decrease layer count
-- Profile with `--hot-reload` to measure frame time
+**Training loss not decreasing:**
+- Lower learning rate (`--learning-rate 0.0001`)
+- More epochs (`--epochs 1000`)
+- Check input/target image alignment
---
## References
-- **Shader Composition:** `doc/SEQUENCE.md` (shader parameters)
-- **Effect System:** `src/gpu/effect.h` (Effect base class)
-- **Training (external):** TensorFlow/PyTorch CNN tutorials
+- **Training Script:** `training/train_cnn.py`
+- **Shader Composition:** `doc/SEQUENCE.md`
+- **Effect System:** `src/gpu/effect.h`