summaryrefslogtreecommitdiff
path: root/doc/CNN_EFFECT.md
diff options
context:
space:
mode:
Diffstat (limited to 'doc/CNN_EFFECT.md')
-rw-r--r--doc/CNN_EFFECT.md223
1 files changed, 223 insertions, 0 deletions
diff --git a/doc/CNN_EFFECT.md b/doc/CNN_EFFECT.md
new file mode 100644
index 0000000..9045739
--- /dev/null
+++ b/doc/CNN_EFFECT.md
@@ -0,0 +1,223 @@
+# CNN Post-Processing Effect
+
+Neural network-based stylization for rendered scenes.
+
+---
+
+## Overview
+
+The CNN effect applies trainable convolutional neural network layers to post-process 3D rendered output, enabling artistic stylization (e.g., painterly, sketch, cel-shaded effects) with minimal runtime overhead.
+
+**Key Features:**
+- Multi-layer convolutions (3×3, 5×5, 7×7 kernels)
+- Modular WGSL shader architecture
+- Hardcoded weights (trained offline)
+- Residual connections for stable learning
+- ~5-8 KB binary footprint
+
+---
+
+## Architecture
+
+### File Structure
+
+```
+src/gpu/effects/
+ cnn_effect.h # CNNEffect class
+ cnn_effect.cc # Implementation
+
+workspaces/main/shaders/cnn/
+ cnn_activation.wgsl # Activation functions (tanh, ReLU, sigmoid, leaky_relu)
+ cnn_conv3x3.wgsl # 3×3 convolution
+ cnn_conv5x5.wgsl # 5×5 convolution
+ cnn_conv7x7.wgsl # 7×7 convolution
+ cnn_weights_generated.wgsl # Weight arrays (generated by training script)
+ cnn_layer.wgsl # Main shader (composes above snippets)
+```
+
+### Shader Composition
+
+`cnn_layer.wgsl` uses `#include` directives (resolved by `ShaderComposer`):
+```wgsl
+#include "common_uniforms"
+#include "cnn_activation"
+#include "cnn_conv3x3"
+#include "cnn_weights_generated"
+```
+
+---
+
+## Usage
+
+### C++ Integration
+
+```cpp
+#include "gpu/effects/cnn_effect.h"
+
+// Create effect (1 layer for now, expandable to 4)
+auto cnn = std::make_shared<CNNEffect>(ctx, /*num_layers=*/1);
+
+// Add to timeline
+timeline.add_effect(cnn, start_time, end_time);
+```
+
+### Timeline Example
+
+```
+SEQUENCE 10.0 0
+ EFFECT CNNEffect 10.0 15.0 0 # Apply CNN stylization for 5 seconds
+```
+
+---
+
+## Training Workflow (Planned)
+
+**Step 1: Prepare Training Data**
+```bash
+# Collect before/after image pairs
+# - Before: Raw 3D render
+# - After: Target artistic style (hand-painted, filtered, etc.)
+```
+
+**Step 2: Train Network**
+```bash
+python scripts/train_cnn.py \
+ --input rendered_scene.png \
+ --target stylized_scene.png \
+ --layers 3 \
+ --kernel_sizes 3,5,3 \
+ --epochs 100
+```
+
+**Step 3: Export Weights**
+```python
+# scripts/train_cnn.py automatically generates:
+# workspaces/main/shaders/cnn/cnn_weights_generated.wgsl
+```
+
+**Step 4: Rebuild**
+```bash
+cmake --build build -j4
+```
+
+---
+
+## Implementation Details
+
+### Convolution Function Signature
+
+```wgsl
+fn cnn_conv3x3(
+ tex: texture_2d<f32>,
+ samp: sampler,
+ uv: vec2<f32>,
+ resolution: vec2<f32>,
+ weights: array<mat4x4<f32>, 9>, # 9 samples × 4×4 matrix
+ bias: vec4<f32>
+) -> vec4<f32>
+```
+
+- Samples 9 pixels (3×3 neighborhood)
+- Applies 4×4 weight matrix per sample (RGBA channels)
+- Returns weighted sum + bias (pre-activation)
+
+### Weight Storage
+
+Weights are stored as WGSL constants:
+```wgsl
+const weights_layer0: array<mat4x4<f32>, 9> = array(
+ mat4x4<f32>(1.0, 0.0, 0.0, 0.0, ...), # Center pixel
+ mat4x4<f32>(0.0, 0.0, 0.0, 0.0, ...), # Neighbor 1
+ // ... 7 more matrices
+);
+const bias_layer0 = vec4<f32>(0.0, 0.0, 0.0, 0.0);
+```
+
+### Residual Connection
+
+Final layer adds original input:
+```wgsl
+if (params.use_residual != 0) {
+ let input = textureSample(txt, smplr, uv);
+ result = input + result * 0.3; # Blend 30% stylization
+}
+```
+
+---
+
+## Multi-Layer Rendering (Future)
+
+For N layers, use ping-pong textures:
+
+```
+Pass 0: input → temp_a (conv + activate)
+Pass 1: temp_a → temp_b (conv + activate)
+Pass 2: temp_b → temp_a (conv + activate)
+Pass 3: temp_a → screen (conv + activate + residual)
+```
+
+**Current Status:** Single-layer implementation. Multi-pass infrastructure ready but not exposed.
+
+---
+
+## Size Budget
+
+| Component | Size | Notes |
+|-----------|------|-------|
+| `cnn_activation.wgsl` | ~200 B | 4 activation functions |
+| `cnn_conv3x3.wgsl` | ~400 B | 3×3 convolution logic |
+| `cnn_conv5x5.wgsl` | ~600 B | 5×5 convolution logic |
+| `cnn_conv7x7.wgsl` | ~800 B | 7×7 convolution logic |
+| `cnn_layer.wgsl` | ~800 B | Main shader |
+| `cnn_effect.cc` | ~300 B | C++ implementation |
+| **Weights (variable)** | **2-6 KB** | Depends on network depth/width |
+| **Total** | **5-9 KB** | Acceptable for 64k demo |
+
+**Optimization Strategies:**
+- Quantize weights (float32 → int8)
+- Prune near-zero weights
+- Share weights across layers
+- Use separable convolutions (not yet implemented)
+
+---
+
+## Testing
+
+```bash
+# Run effect test
+./build/test_demo_effects
+
+# Visual test in demo
+./build/demo64k # CNN appears in timeline if added
+```
+
+**Test Coverage:**
+- Construction/initialization
+- Shader compilation
+- Bind group creation
+- Render pass execution
+
+---
+
+## Troubleshooting
+
+**Shader compilation fails:**
+- Check `cnn_weights_generated.wgsl` syntax
+- Verify all snippets registered in `shaders.cc::InitShaderComposer()`
+
+**Black/corrupted output:**
+- Weights likely untrained (using placeholder identity)
+- Check residual blending factor (0.3 default)
+
+**Performance issues:**
+- Reduce kernel sizes (7×7 → 3×3)
+- Decrease layer count
+- Profile with `--hot-reload` to measure frame time
+
+---
+
+## References
+
+- **Shader Composition:** `doc/SEQUENCE.md` (shader parameters)
+- **Effect System:** `src/gpu/effect.h` (Effect base class)
+- **Training (external):** TensorFlow/PyTorch CNN tutorials